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E — THE object of this memoir is to initiate the mathematical investigation of various

o = ossible ways of conceiving the nature of the material world. In so far as its results
— p Y 8

= O are worked out in precise mathematical detail, the memoir is concerned with the

Eg possible relations to space of the ultimate entities which (in ordinary language)

constitute the “stuff” in space. An abstract logical statement of this limited
problem, in the form in which it is here conceived, is as follows: Given a set of
entities which form the field of a certain polyadic (z.e., many-termed) relation R,
what “axioms” satisfied by R have as their consequence, that the theorems ot
Euclidean geometry are the expression of certain properties of the field of R? If the
set of entities are themselves to be the set of points of the Euclidean space, the
problem, thus set, narrows itself down to the problem of the axioms of Euclidean
geometry. The solution of this narrower problem of the axioms of geometry is
assumed (cf. Part II., Concept I.) without proof in the form most convenient for this
wider investigation. But in Concepts IIL, IV., and V., the entities forming the field
of R are the “stuff,” or part of the “stuff)” constituting the moving material world.
PoincarE™ has used language which might imply the belief that, with the proper
definitions, Euclidean geometry can be applied to express properties of the field
of any polyadic relation whatever. His context, however, suggests that his thesis
1s, that in a certain sense (obvious to mathematicians) the Euclidean and certain
other geometries are interchangeable, so that, if one can be applied, then each of
the others can also be applied. Be that as it may, the problem, here discussed, is
to find various formulations of axioms concerning R, from which, with appropriate
definitions, the Euclidean geometry issues as expressing properties of the field of R.
In view of the existence of change in the material world, the investigation has to
be so conducted as to introduce, in its abstract form, the idea of time, and to provide
for the definition of velocity and acceleration.

The general problem is here discussed purely for the sake of its logical (v.e.,
mathematical) interest. It has an indirect bearing on philosophy by disentangling the
essentials of the idea of a material world from the accidents of one particular concept.
The problem might, in the future, have a direct bearing upon physical science if a
concept widely different from the prevailing concept could be elaborated, which

* (f. ‘La Science et 'Hypothése,” chap. III,, at the end.
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466 DR, A. N. WHITEHEAD ON

allowed of a simpler enunciation of physical laws. But in physical research so much
depends upon a trained imaginative intuition, that it seems most unlikely that
existing physicists would, in general, gain any advantage from deserting familiar
habits of thought.

Part I. (i) consists of general considerations upon the nature of the problem and
the method of procedure. Part I. (i) contains a short explanation of the symbols
used. Part II. is devoted to the consideration of three concepts, which embody the
ordinary prevailing ideas upon the subject and slight variants from them. The
present investigation has, as a matter of fact, grown out of the Theory of Interpoints,
which is presented in Part ITL (ii), and of the Theory of Dimensions of Part IV. (i).
These contain two separate answers to the question: How can a point be defined in
terms of lines? The well-known definition® of the projective point, as a bundle of
lines, assumes the descriptive point. The problem is to define it without any such
assumption. By the aid of these answers two concepts, IV. and V., differing very
widely from the current concepts, have been elaborated. Concept V., in particular,
appears to have great physical possibilities. Indeed, its chief difficulty is the
bewildering variety of material which it yields for use in shaping explanations of
physical laws. It requires, however, the discovery of some appropriate laws of motion
before it can be applied to the ordinary service of physical science.

The Geometry throughout is taken to be three-dimensional and Euclidean. In
Concept V. the definition of parallel lines and the “Euclidean” axiom receive new
forms ; also the ““ points at infinity ” are found to have an intimate connection with
the theory of the order of points on any straight line. The Theory of Dimensions is
based on a new definition of the dimensions of a space.

The main object of the memoir is the development of the Theory of Interpoints, of
the Theory of Dimensions, and of Concept V. The other parts are explanatory and
preparatory to these, though it is hoped that they will be found to have some
independent value. '

Parr L-—(i) GeNErAL CONSIDERATIONS.

Definition.—The Material World is conceived as a set of relations and of entities
which occur as forming the ¢ fields” of these relations.

Definition.—The Fundawmental Relations of the material world are those relations
in it, which are not defined in terms of other entities, but are merely particularized
by hypotheses that they satisfy certain propositions.

Definition.—The hypotheses, as to the propositions which the fundamental relations
satisfy, are called the Axioms of that concept of the material world.

Definition.—Each complete set of axioms, together with the appropriate definitions
and the resulting propositions, will be called a Concept of the Material World.

* Here in “Descriptive Gieometry ” straight lines are open, and three collinear points have a non-

projective relation of order ; in “Projective Gieometry ” straight lines are closed, and four collinear points
have a projective relation of separation. '
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MATHEMATICAL CONCEPTIS OF THE MATERIAL WORLD. 467

Defimtion.—The complete class of those entities, which are members of the fields
of fundamental relations, is called the class of Ultimate Existents. This technical
name is adopted without prejudice to any philosophic solution of the question of the
true relation to existence of the material world as thus conceived.

Every concept of the material world must include the idea of time. Time must be
composed of Instants (c¢f. BERTrRAND Russerr, ‘ Mind, N.S., vol. 10, No. 39). Thus
Instants of Time will be found to be included among the ultimate existents of every
concept.

Definition.—The class of ultimate existents, exclusive of the instants of time, will
be called the class of Objective Reals.

The relation of a concept of the material world to some perceiving mind is not to
be part of the concept. Also we have no concern with the philosophic problem ot
the relation of any, or all, of these concepts to existence.

In Geometry, as derived from the Greeks, the simple elements of space are povnts,
and the science is the study of the relations between points. Points occur as
members of the fields of these relations. Then matter (the ultimate ¢ stuff” which
occupies space) in its final analysis, even if it is continuous, consists of entities, here
called particles, associated with the points by relations which are expressed by
saying that a particle occupies (or is'at) a point. Thus matter merely occurs as one
portion of the field of this relation of occupation ; the other portion consists of points
of space and of instants of time. Thus  occupation” is a triadic relation holding in
each specific instance between a particle of matter, a point of space, and an instant of
time. According to this concept of a material world, which we will call the Classical
Concept, the class of ultimate existents is composed of three mutually exclusive
classes of entities, namely, points of space, particles of matter, and nstants of time.
Corresponding to these classes of entities there exist the sciences of Geometry, of
Chronology, which may be defined as the theory of time considered as a one-
dimensional series ordinally similar to the series of real numbers, and of Dynamaics.
There appears to be no science of matter apart from its relations to time and space.

Opposed to the classical concept stands LrieNiz's theory of the Relativity of Space.
This is not itself a concept of the material world, according to the narrow definition
here given. It is merely an indication of a possible type of concepts alternative to
the classical concept. It is not very obvious how to state this theory in the precise
nomenclature here adopted. The theory at least means that the points of space, as
conceived in the classical concept, are not to be taken among the objective reals.
But a wider view suggests that it is a protest against dividing the class of objective
reals into two parts, one part (the space of the classical concept) being the field of
fundamental relations which do not include instants of time in their fields, and the
other part (the particles) only occurring in the fields of fundamental relations which
do include instants of time. In this sense it is a protest against exempting any part
of the universe from change. But it is not probable that this is the light in which

302
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468 DR. A. N. WHITEHEAD ON

Leieniz himselt regarded the theory. This theory, though at present it is nominally
the prevailing one, has never been worked out in the form of a precise mathematical
concept. It is on this account criticized severely by BerTrAND RUSSELL (cf. loc. cit.
and ‘ Philosophy of Lrisniz,’ Cambridge, 1900, p. 120), who, however, has gone
further than any of its upholders to give it mathematical precision. Of course, from
the point of view of this paper, we are not concerned with upholding or combatting
any theory of the material world. Our sole purpose is to exhibit concepts not
inconsistent with some, if not all, of the limited number of propositions at present
believed to be true concerning our sense-perceptions.

Definition.—Any concept of the material world which demands two classes of
objective reals will be called a Dualistic concept ; whereas a concept which demands
only one such class will be called a Monistic concept.

The classical concept is dualistic; Leibnizian concepts will be, in general, monistic
(¢f. however Concept IVA.). Occam’s razor—Entia non multiplicanda preeter
necessitatem—formulates an instinctive preference for a monistic as against a
dualistic concept. Concept IIL below is an example of a Leibnizian monistic concept.
The objective reals in it may be considered to represent either the particles or the
points of the classical concept. But they change their spatial relations. Perhaps
Le1BN1z was restrained from assimilating his ideas more closely to Concept IIL by a
prejudice against anything, so analogous to a point of space, moving—a prejudice
which arises from confusing the classical dualistic concept with the monistic concepts.
It is of course essential that at least some members of the class of objective reals
should have different relations to each other at different instants. Otherwise we are
confronted with an unchanging world. Concept V. is another Leibnizian monistic
concept.

The Tvme-Relation.—In every concept a dyadic serial relation, having for its field
the instants of time and these only, is necessary. The properties of this Time-
Relation form the pure science of chronology. The time-relation is, in all concepts, a
serial relation ordinally similar to the serial relation which generates the series of
negative and positive real numbers.® This fact need not be further specified during
the successive consideration of the various concepts, nor need any of the propositions
of pure chronology be enunciated.

Definition.—The class of instants of time is always denoted by T in every concept.

The Essential Relation.—In every concept at least all the propositions of geometry
will be exhibited as properties of a single polyadic relation, here called the essential
relation. The field of the essential relation will consist, either of the whole class of
ultimate existents (e.g., in Concepts IIL, IVB. and V.), or of part of the class of
objective reals together with the instants of time (e.g., in Concept IVa.), or of the
whole class of objective reals (e.g., in Concept IL.), or of part of the class of objective

* For interesting reflections on this subject, influenced by the Kantian Philosophy and previous to the
modern ¢ Logicization of Mathematics,” ¢f. HAMILTON, ¢ Lectures on Quaternions,’ preface.
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reals (e.g., in Concept I.). The essential relation ot any one concept will be a relation
between a definite finite number of terms, for example, between three terms in
Concepts I. and II., between four terms in Concept III., and between five terms in
Concepts IV. and V.*

Definition.—In the exposition of every concept, the essential relation of that
concept is denoted by R.

The Extraneous Relations.—In all the concepts here considered, other relations,
here called the extraneous relations, will be required in addition to the time-relation
and the essential relation. In Concepts I. and II. and IV. an indefinite (if not
infinite) number of extraneous relations are required, determining the positions of
particles. In Concepts IIL., IV. and V. one tetradic extraneous relation is required
to determine the “kinetic axes” of reference for the measurement of velocity.

The time-relation, the essential relation and the extraneous relations form the
fundamental relations of any concept in which they occur.

It will now be necessary to define geometry anew, since the previous definition has
essential reference to the dualism of the classical concept. A proposition of geometry
is any proposition (1) concerning the essential relation; (2) involving one, and only
one, instant of time ; (3) true for any instant of time.

In the classical concept everything is sacrificed to simplicity in reference to
geometry, probably because it arose when geometry was the only developed science.
The result is that, when the properties of matter are dealt with, an appalling number
of extraneous relations are necessary. '

Judged by Occam’s principle, this class of extraneous relations forms a defect in
Concepts I. and II. and IV. Also, in both forms of the classical concept (viz., in
Concepts I. and II.) geometry is segregated from the other physical sciences to a
greater degree than in the other concepts.

In the study of any concept there are four logical stages of progress. The first
stage consists of the definition of those entities which are capable of definition in
terms of the fundamental relations. These definitions are logically independent of
any axioms concerning the fundamental relations, though their convenience and
importance are chiefly dependent upon such axioms. The second stage consists of the

* The idea of deriving geometry (at least projective geometry without reference to order) from a single
triadic relation was (I believe) first enunciated and investigated by Mr. A. B. Kempg, F.R.S., in 1890,
¢f. “On the Relation between the Logical Theory of Classes and the Geometrical Theory of Points,”
¢Proc. Lond. Math. Soc.,” vol. XXI. It has since been worked out in detail for Fuclidean geometry by
Dr. O. VEBLEN, ¢f. “A System of Axioms for Geometry,” ‘Trans. Amer. Math. Soc.,” vol. 5, 1904.
Also ¢f. Professor J. RovcE on “ The Relation of the Principles of Logic to the Foundations of Geometry,”
‘Trans. Amer. Math. Soc.,” 1905. Professor ROYCE emphasises the importance of KEMPE'S work and
considerably extends it. This memoir (which unfortunately only came into my hands after the completion
of the present investigation) anticipates a general line of thought of the present paper in the emphasis laid
on the derivation of geometry from a single polyadic relation; otherwise our papers are concerned with
different problems.
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470 DR. A. N. WHITEHEAD ON

deduction of those properties of the defined entities which do not depend upon the
axioms. The third stage is the selection of the group of axioms which determines
that concept of the material world. The fourth stage is the deduction of propositions
which involve among their hypotheses some or all of the axioms of the third stage.
Psychologically the order of study is apt to be inverted, by first choosing propositions
of the second and fourth stages because of their parallelism with the propositions of
sense-perception and then by considering the first and third stages. The essential
part of our task in passing concepts in review is the exhibition of the first and third
stages. The second and fourth stages will only be so far touched upon as seems
desirable for the purposes of elucidation.

Thus in respect to each concept considered the investigation will proceed as
follows :—A certain relation R (the essential relation of the concept in question),
which holds between a certain definite number of entities, is considered. The class
of entities, between sets of which this relation holds, is called the “field” of R.
Definitions of entities allied to R and to entities of the field of R are then given.
These definitions involve no hypotheses as to the properties of R, but are of no
importance unless R has as a matter of fact certain properties. For example, it may
happen that the classes, thus defined, are all the null class (i.e., the class with no
members) unless R has the requisite properties. Again deductions (in the second
stage), made without any hypothesis as to the properties of R, may be entirely trivial
unless R has certain properties, If R has not the requisite properties the deductions
often sink into the assertion that a certain proposition which is false implies some
other proposition. This is true® but trifling. The “axioms” respecting R are then
given. These are the hypotheses as to the properties of R which are required in the
concept under consideration. Finally such deductions are given as are necessary to
elucidate the concept.

None of the reasoning of this memoir depends on any special logical doctrine which
may appear to be assumed in the form in which it is set out. Furthermore certain
contradictions recently discovered have thrown grave doubt upon the current doctrine
of classes as entities. Any recasting of our logical ideas upon the subject of classes
must of course simply issue in a change of our ideas as to the true logical analysis of
propositions in which classes appear. The propositions themselves, except a few
extreme instances which lead to contradictions, must be left intact. Accordingly the
present memoir in no way depends upon any theory of classes.

The above considerations as to method must essentially hold for any investigation
respecting axioms of geometry or of physics, viewed purely as deductive sciences, and
apart from the question of experimental verification.

In Concepts L, I, and IIL. the members of the “field” of R are to be considered
as points, except those members of the field which are instants of time. In these
concepts the lines and planes are classes of points. In Concepts IV. and V. the

* (f. RUSSELL, ‘ The Principles of Mathematics,” § 16.
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members of the “field” of R, other than the instants ot time, are to be considered as
lines taken as simple entities. Points are classes of these simple lines. But the
ordinary line of geometry which has parts and segments is a class of points, and so is
the ordinary plane of geometry. In Concept IIL, which is Leibnizian and monistic,
the points (perhaps “ particles” is here a better word) move, and the straight lines
and planes disintegrate from instant to instant. In Concepts IV. and V. the points
similarly disintegrate.

(ii) EXPLANATION OF SYMBOLISM.

This explanation is only concerned with the general logical symbolism. The
special symbols which arise out of the ideas of the paper are defined in their proper
places. PraNo’s* chief symbols are used. The changes and developments from
Praxo, which will be found here, are due to RusseLr and myself working in
collaboration for another purpose. "It would be impossible to disentangle our various
contributions. f

None of the reasoning of the paper is based upon any peculiarity of the symbolism.
It is used here only as an alternative form for enunciations, for the sake of its
conciseness and (above all) its precision. In the verbal enunciations precision has
been to some extent sacrificed to lucidity ; and the exact statement of what is meant
is always to be sought in the symbolic alternative form. The proofs have been
translated into words out of the symbolic form in which they were mostly elaborated.

On o, =, c, ¢ =, = Df

There are five copulas, namely, o, =, ¢, ¢, =. Here x>y means x vmplies y; and
x = y means x 1mplies y and y vmplies x; and xcy means all &'s are y's; and xey
means x ts « member of y; and x, y e u means x and y are members of u. Note that
xcy implies that « is a subclass of y; a class will be said to contain a subclass and
to possess a member. Lastly, x = y means x us dentical with y. Note that, if Df,
short for Definition, is placed at the end of the line, thus,

x=y Df

the symbols mean that  ¢s defined to stand for y. In such a case y is some complex
of symbols, and « will be an abbreviated symbol standing for v. -

On (l)!m, (.’L') ‘ (]STLU, (Hw) .(l)!.%, (ﬂl, ?/)9 (H%, ?/), Oz
Propositional Functions.-——¢!ax means x has the property ¢, where ¢ is given
different forms corresponding to different properties; fy!x means x has the property
* (f. < Notations de Logique Mathématique,” Turin, 1894; and ‘Formulaire Mathématique,” Turin,
1903.

1 See, however, RUSSELL’S articles, “Sur la Logique des Relations,” ‘Revue de Mathématiques,’
vol. VIL, 1900-1901, Turin.
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472 DR. A. N. WHITEHEAD ON

of being a class possessing at least one member ; and (x) . ¢l means pla is true for
every value of x; and (Fx) . ¢!x means there exists a value of x for which ¢!z s
true. Note that (x) and (g«), written before any proposition involving x, give the
above meanings, even if the proposition is not in the symbolic form ¢lx. If the
proposition involve both x and ¥, then (x, y) prefixed means that the proposition is
true for all values of & and y; and similarly for (x, , z), and so on. Also (7, ¥)
prefixed means that there exist values of 2 and y, such that the proposition is true ;
and similarly for (fz, v, 2), and so on. Furthermore ¢!z o, Yz stands for
(®) . {¢p!z > Y!lax}, and similarly for two and three variables.

On the Use of Dots, viz., ., :,

. Y
o ey s

p.qor p:qor p..qor p::qall mean p and q are both true propositions. As
an example, x, yeu, which has been defined above, is really the proposition
weu.yew; and x, ¥, zew is the proposition xewu . yeu . zew.

Dots as Brackets.—The different symbolic forms for the joint assertion of pro-
positions arise from the fact that dots are also used as bracket forms for propositions
according to the following rules :— :

(i) The larger aggregation of dots represents the exterior bracket. (i) The dots
at the end of a complete sequence of symbols are omitted. (iii) The dots immediately
preceding or succeeding the implication sign, viz, o, are exterior brackets to any
equal number of dots occurring in other capacities (e.g., as above in the joint assertion
of propositions). (iv) The dots which also serve to indicate the joint assertion of
propositions are interior brackets to any equal number of dots occurring in other
capacities. (v) The dots after (x) and (g«) are increased in number according to the
necessity for their use as brackets.

In reading a symbolic proposition it is best to begin by searching for that
implication sign, viz., o, which is preceded or succeeded by the greatest number of
dots. This splits up the proposition into hypothesis and consequent ; and so on with
these subsidiary propositions, if necessary. '

On V, —, =e¢ #, () pla, « (gx).dle

Again pV g means one or other or each of p and q is a true proposition; and - p
means p s not true. Thus —¢le means x has not the property ¢; also x —eu
stands for « (zewu); and « # y stands for -~ (z =y); and —(x). ¢!z stands for
- {(x) . pta}; and —~(gx) . lo stands for - {(fz) . pla}.

On & (pla), (wx)(dlx), «, 2%, u, n, U, n

Non-Propositional Functions.—& (plx) denotes the class of terms which have the
property ¢, and (1) (plx) denotes the single entity (if there vs such) which, when
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substituted for x, makes ¢lx to be o true proposition. It is not necessary for the
above symbolism that the proposition.involving x should be in the symbolic form
¢le.  Again, ‘x denotes the class possessing x as its sole member, and 1z denotes
the sole member of the class x, and wuwv denotes the logical sum of uw and v, that is, the
class possessing all members of » and all members of v and no other members. Thus,
vauch denotes the class whose sole members are ¢ and b. Again, unv denotes the
logical product of u and v, that is, the complete common subclass of u and v; and u‘u
denotes the class which 1s the logical sum of all members of w, that is, the class which
has as members all members of members of % ; and n‘u denotes the class which us
the logical product of all members of u. The exact symbolic definition of n‘u is

n‘u=ax{veu.o,.xev} Df

It follows from this definition that, if » possess no members, n‘u is the class of all
entities.

On A, cls’, =, Ncf

Again, A denotes the null class, that is, the class with no members; cls‘u denotes
the class whose members are the subclasses contained in v, including u itself and the
null class. 1t follows that the propositions, vecls' and vcwu, have practically
identical meanings. Again, u-v denotes the class u with the exception of those
members which 1t possesses vn common with v.

The cardinal numbers* are themselves classes. Thus, 1 is the class whose members
are the unit classes, 2 is the class whose members are couples. Accordingly, x €2
means « @s o class with two members; Nc‘u denotes the cardinal number of the
class .

On ¢, ¢, ¢, 1, u“, and so on.

The general form for a non-propositional function whose value depends on w is ¢'a,
where ¢ receives different forms for different functions, as has been illustrated by the
particular cases considered above. The apostrophe may be read as “of”; it is the
general symbol for the connection of the preceding functional sign with the succeeding
argument. According to this rule we should write sin‘x for sin« and log‘x for log x.
Again, ¢“u denotes the class of values of ¢‘w, when the various members of u are
substituted for x; it may be read “the class of ¢'s of w’s.” Thus, if ¢‘x is “ the head
of x,” and w is “ the class of horses,” then ¢“u is “the class of heads of horses.” The
exact symbolic definition of ¢*“u is as follows :

du =2 {(gx) . xeu .z = p‘x} Df

It follows from the definition, by substituting for ¢, that vu, 7“u, u“u, n“u, cls“y,
Nec“u are now defined. '

* Cf. RussELL, ‘Principles of Mathematics,” chap. XI., and FRrEGE, ‘Grundlagen der Arithmetik,’
Breslau, 1884, pp. 79, 85.

VOL. CCV,.—A, 3r
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474 DR. A. N. WHITEHEAD ON

On (ExY¢'y)

Again, (ExY¢‘y) means there exists an entity which s denoted by the non-
propositional function ¢z, when z has the particular value y.  For example, if u is a
class, there is such an entity as its cardinal number, denoted by Ne¢‘u ; but if u is not
a class, there is no such entity as its cardinal number.*

On Symbols of the Type R:( ).

Relations.—R (xyz) means x, y, z form an instance in which the triadic relation R
holds, the special “ positions” of ®, y, z in this instance of that relationship being
indicated by their order of occurrence in the symbol Ri(xyz). Again, Ri( " yz) means
there exists an entiby, x say, such that Ri(xzyz). The symbolic definitions of Ri( yz),
and of analogous symbols, are

Ri(yz) . =. (ge) . Ri(ayz) Dt
Ri(x2). =. (qu) . Ri(xyz) Dt

Ri(ey ). = . (w2) - Ri(wyz) Dt
Ri(x). =.(qy, 2) . Ri(ayz) Dt
Ri(ry ). =.(q= 2) . Ri(eyz) Df

and so on. Again, Ri(;y2) denotes the class of terms, such as x (say), which satisfy
Ri(ayz), and Ri(+;2) denotes the class of terms, such as y (say), such that there exists a
term, x say, such that Ri(xyz) holds. The symbolic definitions of Ri(;yz) and of
analogous entities, and of Ri(-;2) and of analogous entities, are

Ri(sy2) = z {Ri(xyz)} Df

Ri(is2) = § {Ro(aye)) Dr

Ri(ay;) = 2 {Re(eyz)} Df

Ri(52) = @ {(uy) . B (2yz)} Df

Ri(-32) = § {(ge) . Reaye)} Dt

s on RiGy-) =& {(uz) - Ri(wyz)} Df
Ri(+) = @ {(ay> 2) - Ri(wy2)} Df

Ri(+57) = g {(uw, 2) - Ri(zyz)} Df

Ri(-5) = £ (@ g) - Waye)) DY

* The difficult question of the import of a proposition, which contains a non-propositional function (with
some particular entity as argument) to which no entity corresponds, has recently been elucidated by
RussELL, ¢f. ¢ Mind,” October, 1905. All propositions containing such a function are untrue, unless the
function is merely a constituent of a subsidiary proposition whose truth is not implied by the proposition
in question,
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Thus, Ri(;--) denotes the class of terms, such as x (say), such that there exist terms,
y and z sy, such that Ri(zyz) holds.

Again, Ri(;;2) denotes the class which is the logical sum of Ri(;:2) and Ri(+;z);
and Ri(;;7) denotes the class which is the logical sum of Bi(;+") and Ri(-;7); and
Ri(;;;) denotes the class which s the logical sum of Ri(; ) and Ri(:;7) and Ri(:+;),
that is, the “field” of the relation R. The symbolic definitions of the above, and of
similar entities, are :

Ri(5;2) = Ri(5-2)uR(-;2) Df

Ri(sy;) =Ry )uR(-y;) Df

Ri(z;;) = Ri(z; ) uRi(x-;) ’ Df

Ri(;;-) = Ri(; ) uRi("5) Df
and so on, and

Ri(;:;) =R )uR(-;)uR( ;) Df

This notation, which has been explained for triadic relations, can obviously be
extended to any polyadic relations. Thus, Ri(abed) and Ri(abedt) are defined in a
similar manner, and so are the symbols for the allied propositions and classes.

: On 1—1.

A dyadic relation, S say, is called one-one, when each referent has only one relatum,
and each relatum has only one referent. The class of one-one relations is denoted
by 1—1. The symbolic definition is

1—1.=.8S{Serelation : zeSi(;").o,.8(x;) el : yeS(;).5,.8(y)el} Df

On I

The Assertion Sign.—A. proposition, which is stated in symbols as being true, 7.e.,
which is asserted as distinct from being considered, has the symbol I prefixed to it,
with as many dots following as will serve to bracket off the proposition. This
symbol | is called the assertion sign.*

Parr II.—TaE Puxcruarn CoNcEPTS.

Those concepts of the material world in which the class of objective reals is
composed of points, or particles, or of both, will be called the punctual concepts.
The classical concept is a punctual concept, and will be considered first. The other
punctual concepts can be explained briefly by reference to the classical concept.

Concept 1.—(The Classical Concept).—This is dualistic, the class of objective reals

* This symbol is due to FREGE, who first drew attention to .the necessity of -the idea which it
symbolizes ; ¢f. his ¢ Begriffschrift,” HALLE, 1879, and RUSSELL, Principles of Mathematics,” p. 35.

3P 2
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476 DR. A. N. WHITEHEAD ON

being subdivided into points of space and particles of matter. The essential relation
has for its field the points of space only. Slight variants (not considered here) can
be given to the concept by varying the properties of the essential relation, so as to
make the geometry non-Euclidean, or, retaining Euclidean geometry, so as to give
various forms to the essential relation and the resulting axioms. In the exposition of
a system of geometrical axioms for Concept I., VEBLEN'S memoir (¢f. loc. cit.), to
which I am largely indebted, will be followed. The changes which are made from
VEBLEN'S treatment are (i) in the addition of the symbolism which emphasizes the
idea of the essential relation, and (ii) in the fact that the question of the independence
of axioms is here ignored, through a desire not to overload this memoir with
difficulties (both for the author and reader) belonging to another part of the subject.
As the result of (ii), some of VEBLEN'S definitions and axioms have been simplified
(and, in a sense, spoiled). The axioms thus obtained for Concept I. will shorten our
investigations of other concepts by serving as a standard of comparison to determine
whether the axioms of the other concepts are sufficient to yield three-dimensional
Euclidean geometry.*

The essential relation (called R) is triadic. * Ri(abc) means the points a, b, ¢ are in
the linear order (or the R-order) abe. The relation R, when Ri(abe) holds, is not
symmetrical as between the three points a, b, and ¢; namely, it will be found that
and b (or b and ¢) cannot be interchanged.

Definitions of Concept 1.

Definution.—The class Ri(a;b) is the segment between a and b; and the class
Ri(ab;) is the segmental prolongation of ab beyond b; and the class Ri(;ab) is the
segmental prolongation of ab beyond a. Tt follows from the subsequent axioms that
Ri(ab;) is identical with Ri(;ba). v

Definition.—The straight line ab is the logical sum of Ri(a;b) and Ri(;ab) and
Ri(ab;) together with & and b themselves. Its symbol is Riab. The definition in
symbols is

Riab = Ri(;ab) u Ri(a;b) u Ri(ab;) u ca u b Df

* On the philosophical questions connected with the mathematical analysis of geometry cf. ¢ A Critical
Exposition of the Philosophy of Lrisniz’ Cambridge, 1900, and ‘The Principles of Mathematics,’
Cambridge, 1903, both by BERTRAND RUSSELL; and also two articles by L. COUTURAT in the ¢ Revue de
Métaphysique et de Morale’ (Paris) for May and September, 1904, one entitled ‘¢ La philosophie des
Mathématiques de KANT” and the other “Les principes des Mathématiques—VI. La géometrie”; also
POINCARE’S ¢ Science and Hypothesis,” Part IT., English translation, London, 1905.

For expositions of exact systems of axioms ¢f. ¢ Vorlesungen iiber neuere Geometrie, Leipzig, 1882,
by Pascr ; also ‘ I Principii di Geometria,” Turin, 1889, by PEANO; also “I Principii della Geometria di
Posizione,” ¢ Trans. Acad. of Turin,’ 1898, by PIEr1; also HILBERT’S ‘ Foundations of Geometry,” Engl.
Transl,, Chicago, 1902 ; also Professor E. H. MooRrE, “ On the Projective Axioms of Geeometry,” ¢ Transact.
of the Amer. Math. Soe.,” 1903 ; also Dr. O. VEBLEN (loc. ¢it.) ; also Professor J. Rovor (loc. eit.).
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Definition.—The class whose members are the various straight lines is denoted by
ling. The definition in symbols is

‘ ling = v{(ga, b) . @, beR(;3;) . @ # b . v = Rab} Df

Definition.—Any class of points [#.c., members of Ri(;;;)] is called a figure.
Definition.—The class of lines defined by a figure u is the class of lines defined by
any two distinet points of u. Its symbol is Ing‘u. The definition in symbols is

Ing‘u = o {(gz, y) - =, yeunRi(55;) . ¢ # y . v = Riay} Df

Definition.—The linear figure defined by a figure u is the logical sum of all the
lines defined by u (u.e., is all the points on such lines). Thus its symbol is u‘lng‘w.

Definution.—Three points form a triangle, if there is no line which possesses them
all. The symbol expressing that o, b, ¢ are points forming a triangle is A z'(abe).
The definition in symbols is

Ag(abe).=.a,b,ceRi(5;;). = (qv) . veling . a, b, cew Df

Definition.—The space defined by the triangle abc is the linear figure defined by
the linear figure defined by the three points @, b, c. Its symbol is IIy(abc). The
definition in symbols is

HR(OLbO) = U‘lnR‘U‘lnR‘(L‘OL U L‘b U b‘ C) Df

Definition.—The class of planes is the class of spaces defined by any three points
a, b, ¢ when they form a triangle. Its symbol is pleg. The definition in symbols is

pler = 9{(qa, b, ¢) . Ay (abe).v = Ig(abe)} Df

Definitvon.—The space defined by the four points «, b, ¢, d is the linear figure
defined by the figure which is the logical sum of IIz(bed) and Iy (acd) and Iy (abd)
and IIg(abe). Its symbol is IIg(abed). The symbolic definition is

Ty (abed) = Ulng {TIy(bed) U Ty (aed) U Ty (abd) U Ty (abe)} Df

The above definitions are sufficient to exhibit the dependence of the various
geometrical entities on the essential relation, and also to enable us, as far as geometry
is concerned, to pass on to the third stage. Owing to the simplicity of the definitions,
the second stage for this concept is of very small importance.

It will be noticed that none of the definitions contain any reference to length,
distance, area, or volume. This is because none of these ideas appear in the axioms,
and only such definitions are given here as are necessary for the enunciation of the
axioms. According to the well-known®* method of projective metrics, the ideas are
introduced by definition and require no special axiom.

* Cf. VEBLEN, loc. cit.; also ‘Vorlesungen iiber Geometrie,” by CrEBscH, third part; also ¢The
Principles of Mathematics,” by RUsSELL, chap. XLVIIL )
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478 DR. A. N. WHITEHEAD ON

Aaxvoms of Concept 1.

The axioms, it must be remembered, are merely an enumeration of various
propositions concerning the properties of the fundamental relations, which will occur
as hypotheses in the propositions of the fourth stage. In this instance we are merely
considering the axioms of geometry, and these concern the essential relation (R) only.
The axioms will be named systematically thus, IHp R, Il Hp R, III Hp R, and so on.
Their enumeration will take the form of defining these names as abbreviations
standing for the various statements, which will be used subsequently as hypotheses.

ITHpR is the statement that there is at least one set of entities, o, b, ¢, such that
Ri(abe) is true.  The definition in symbols is

IHpR . =.q!R(;3) Df
ITHp R is the statement that Ri(abc) implies Ri(cba). The definition in symbols is
IIHpR . =:(a, b, ¢): Ri(abc) .o . Ri(cba) Df

IIT Hp R is the statement that Ri(abc) is inconsistent with Ri(bea). The definition
in symbols 1s

HIHpR . =:(a, b, ¢): Ri(abe) . o .« Ri(bea) Df

IVHpR is the statement that Ri(abe) implies that a is distinet from ¢. The
definition in symbols is .

IVHpR . =:(a, b, ¢): Ri(abe) .o . a#c Df

VHpR is the statement that, if @ and b are distinet points, the segmental
prolongation of ab beyond b possesses at least one member. The definition in
symbols is

VHpR .=:(a,0): 0, beRi(55;5) . a=b.o.ql{Ri(ab;)} Df

VIHp R is the statement that, if ¢ and d are distinet points, possessed by the line
defined by the points @ and b, then @ is possessed by the line defined by ¢ and d.
The definition in symbols is

VIHpR.=:(a,bc,d):¢c,deRab.c#d.>.aeRicd Df
VII Hp R is the statement that there exist at least three points forming a triangle.
The definition in symbols 1s
VIIHpR . =.(qa,b, c). ay(abec) Df

VIII Hp R is the statement that, if a, b, ¢ be three points forming a triangle, and
Ri(bed) and Ri(cea) hold, then there exists a point possessed both by the segment ab,
and by the line defined by d and e. The definition in symbols is

VIIIHpR . = : (a,b, ¢, d,e): aAg(abe) . Ri(bed) . Ri(cea) . o . ! {Ride n Ri(a;b)} Df
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IXHpR is the statement that there exists a point and a plane, such that the
plane does not possess the point. The definition in symbols is -

IXHpR.=:(gp, d) . pepleg . deRi(5;5;) =p Df

X HpR is the statement that there exist four points @, b, ¢, d, such that the three-
dimensional space Iy(abed) contains the whole class of points. The definition in
symbols is,

XHpR.=.(qa b, ¢ d). Ri(;;;) cy(abed) Df

XIHp R is some statement which secures the continuity (in CANTOR’s sense) of the
points on a line. The axiom néed not be given here, since there will be no reasoning
in this memoir connected with it.

XIT Hp R is the statement that, if @ be any plane and @ a line contained in it, then
there exists a point ¢ in «, such that there is not more than one line, possessing ¢ and
contained in the plane o and not intersecting ¢. The definition in symbols is

XIITHpR . =."aepley . aelingnels‘a .o, ,: (fc):cea:
ILlelingnels‘a.celnl. Ilna=A.U'na=A.5,.0=1 Df

Of these axioms, IX Hp R secures that space is of three dimensions at least, and
X HpR secures that it is of three dimensions at most, and XIIHpR is the
“ Euclidean” axiom. From these twelve axioms the whole of geometry® can be
deduced. The well-known parabolic (z.e., Euclidean) definition of distance (not given
here) assumes an important significance, and all the usual metrical properties follow.

The Extrancous Relations.—Nothing could be more beautiful than the above issue
of the classical concept, if only we limit ourselves to the consideration of an
unchanging world of space. = Unfortunately, it is a changing world to which the
complete concept must apply, and the intrusion at this stage into the classical concept
of the necessity of providing for change can only spoil a harmonious and complete
whole. Owing to the fact that the instants of time are not members of the field of
the essential relation, the time relation and the essential relation have (so to speak)
no point of contact. To remedy this, another subdivision of the class of objective
reals is conceived, namely, the class of particles (where the particles are the ultimate
entities composing the fundamental “stuff” which moves in space). These particles
must form part of the fields of a class of extraneous relations. Each such extraneous
relation is conceived as a triadic relation, which in any particular instance holds
between a particle, a point of space, and an instant of time. Also the field of each
such extraneous relation only possesses one particle, and no particle belongs to the
field of two such relations. Thus each extraneous relation is peculiar to one particle.
Also, as has been pointed out by RusseLr,t to whom the above analysis of these
extraneous relations of the classical concept is in substance due, the impenetrability

* (f. VEBLEN, loc. cit.
T Cf. ¢ Principles of Mathematics,” vol. 1., § 440,
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of matter is secured by the axiom that two different extraneous relations cannot both
relate the same instant of time to the same point. The general laws of dynamics,
and all the special physical laws, are axioms concerning the properties of this class of
extraneous relations.

Thus the classical concept is not only dualistic, but has to admit a class of as many
extraneous relations as there ave members of the class of particles. ‘

Instead of the specific relations of occupation for the various particles, one general
triadic relation of occupation can be considered. Thus, O(pAt) may be considered as
the statement the particle p occupies the point A at the instant £. Then for any
given A and ¢ there is either one only or no particle p for which O’( pAt) is true.
Then the laws of physics are the properties of this single extraneous relation O.
But the use of this single relation apparently introduces no real simplification,
differing in this respect from the use of the essential relation which so simplifies the
statement of the axioms of geometry. The general relation O remains a mere alter-
native statement of the facts respecting the various specific relations of occupation.

Concept I1.—This concept is a monistic variant of the classical concept suggested
by RusseLn.* In the classical concept the particles only occur as terms in the
triadic extraneous relations. If we abolish the particles (in the ¢ classical” sense),
and transform the extraneous relations into dyadic relations between points of space
and instants of time, everything will proceed exactly as in the classical concept.
The reason for the original introduction of  matter” was, without doubt, to give the
senses something to perceive. If a relation can be perceived, this Concept II. has
every advantage over the classical concept. Otherwise the material world, as thus
conceived, would appear to labour under the defect that it can never be perceived.
But this is a philosophic question with which we have no concern.

Concept II1.—This is a Leibnizian concept, and also a monistic variant of the
classical concept, obtained by abandoning the prejudice against points moving.
" This concept can be otherwise considered, as obtained from the modern (and
Cartesian) point of view of the ether, as filling all space. The particles of ether (or
moving points) compose the whole class of objective reals. The essential relation (R)
is a tetradic relation, and, in each specific instance of the relation holding, three of
the terms are objective reals and the remaining term is an instant of time. Ri(abet)
may be read as stating the objective reals a, b, ¢ are wn the R-order abc at the
instant t. Instead of Ri(abet), it will be convenient to write R;j(abc). Then the
geometrical definitions are exactly those of Concept.I., replacing R everywhere by R,.
Also the geometrical axioms are those of Concept I.; except (i) that R is replaced by
R;, (i) that IHpR, and VIIHpR, and IXHpR, are further modified by the
introduction of the hypothesis ¢ e T—thus I Hp R of Concept I. becomes

IHpR.=:teT.j,.§{!R,‘(;;:) Df

* (f. < Principles of Mathematics,” vol. L, § 441,
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and similarly for the other two axioms, and (iii) that one additional axiom (the axiom
of persistence) must be introduced, namely,

XIITHpR . =:teT .o, . Ri(5;5;7) e R(5550) Df

This axiom of persistence is unnecessary for the geometrical reasoning, but is an
integral part of the * physical ” side of the concept. Also the hypothesis ¢ €T, which
is introduced in the three axioms (I, VII, IX) Hp R, is unnecessary in the other
axioms, since it is implied by the hypotheses already existing. The same explanation
holds of the absence of the hypothesis, ¢ €T, from many axioms and propositions of
subsequent concepts.

Thus at each instant the objective reals may be considered as the points of the
classical concept, and the whole of Euclidean geometry holds concerning them. But
at another instant the points will not have preserved the same geometrical relations
as held between them at the previous instant. Thus, in the comparison of the states
of the objective reals at different instants, the objective reals assume the character of
particles.

The Extraneous Relation.—A single extraneous relation is necessary to obviate the
difficulty of comparing straight lines and planes at one instant with similar entities at
another instant. In what sense can a point at one instant be said to have the same
position as a point at another instant ? This definition can be effected by introducing
into the concept a single tetradic extraneous relation S, so that, when S*(uvwt) holds,
¢ is an instant of time, and u, v, w are intersecting straight lines mutually at right
angles. Also corresponding to any instant ¢ in the fourth term, there is one and
only one line for each of the other terms respectively. This last condition, expressed
in symbols, is

teT .o, . S (5 t)el . S( 5 t)el . S(5t)el

The straight lines indicated at each instant by this relation are to be taken as the
“kinetic axes.”* Velocity and acceleration can now be defined, and a general
continuity of motion (in some sense) must be included among the axioms.

This concept has the advantage over Concepts I. and IL that it has reduced the
class of extraneous relations to one member only, in the place of the innumerable and
perhaps infinite number of extraneous. relations in the other two concepts. The
concept pledges itself to explain the physical world by the aid of motion only. It
was indeed a dictum with some eminent physicists of the nineteenth century that
“ motion is of the essence of matter.” But this concept takes them rather sharply at
their word. There is absolutely nothing to distinguish one part of the objective reals
from another part except differences of motion. The * corpuscle” will be a volume in
which some peculiarity of the motion of the objective reals exists and persists. Two

* Cf. W. H. MACAULAY, ¢ Bulletin of the Amer. Math. Soc.,” 1897.
VOL. CCV.—A. 39
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482 DR. A. N. WHITEHEAD ON

different” developments, viz., Concept IIIa. and Concept IIIB., are now possible,
according as the persistence is taken to be of one or other of two possible types.

Concept I111.—Here the persistence is that of the same objective reals in the same
special type of motion. KELVIN'S vortex ring theory of matter can be adapted to
such a concept.

Concept I11z.—Here the persistence is that of the type of motion in some volume,
but not necessarily of the identity of the objective reals in the volume. The
continuity of motion of a corpuscle as a whole becomes then the definition of the
udentity of a corpuscle at one instant with a corpuscle at another instant.

Parr IIL—(i) GeNErRAL ExrraxationNs or LiNear CoNcEPTS.

These concepts depart widely from the classical concept. The objective reals (at
least those which, with the instants of time, form the field of the essential relation)
have properties which we associate with straight lines, considered throughout their
whole extent as single indivisible entities. These objective reals, which in Concept V.
are all the objective reals, will be called linear objective reals. Perhaps, however, a
closer specification of the linear objective reals of these concepts is to say that they are
the lines of force of the modern physicist, here taken to be ultimate unanalysable
entities which compose the material universe, and that geometry is the study of a
certain limited set of their properties. But this mode of realizing the nature of the
linear objective reals has also its pitfalls, for a line of force suggests ends, while these
linear objective reals have no properties analogous to the properties of the ends of
lines of force. The whole of a straight line, viewed as a point-locus, will be found to
be associated with a linear objective real. The “linear” concepts here considered are
all Leibnizian.

Concept IVa. is dualistic, and requires among the objective reals a class of
“ particles” in addition to the linear objective reals. Concept IVB. is the monistic
variant of Concept IVA., obtained exactly as Concept 1L is derived from Concept I.
Both of the Concepts IVA. and IVB. labour under the same defect as Concepts I.
and II. in requiring an indefinitely large class of extraneous relations. Concept V. is
monistic, and is by far the most interesting of the set of linear concepts. It requires
only one extraneous relation to perform a similar office to that of the extraneous
relation in Concept IIL.

Points are now defined complex entities, being certain classes of linear objective
reals. Geometers are already used to the idea of the point as complex. In
projective geometry, as derived from descriptive geometry, the projective point is
nothing but a class of straight lines.* This idea will now be extended to all

* (f. Pascw, loc. cif., and SCHUR, “Ueber die Einfilhrung der sogennanten idealen Elemente in die
projective Geometrie,” ¢ Math. Annal.,” vol. XXXIX., and Bonora, “Sulla Introduzione degli Enti
improprii in Gieometria projettiva,” ¢ Giorn. di Mat.,” vol. XXXVIII.


http://rsta.royalsocietypublishing.org/

A\

/ y

A

a
{ B
L 2

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
V. \
b

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

MATHEMATICAL CONCEPTS OF THE MATERIAL WORLD. 483

points; and the descriptive point, from which in the current theory the projective
point is ultimately derived, is here abolished. The * Theory of Interpoints” [cf.
Part IIL (ii)] and the ¢ Theory of Dimensions” [¢f. Part IV. (i)] represent two
distinet methods of overcoming the following initial and obvious difficulty of these
“linear” concepts :—A point is to be defined as the class of objective reals
“ concurrent” at a point. But this definition is circular. How can this circularity
be removed ? The Theory of Interpoints and the Theory of Dimensions give two
separate answers to this question. The points in the linear concepts, being only
classes of objective reals, are capable of disintegration. In fact, when motion is
considered, it will be found that the points of one instant are, in general, different
from the points of another instant, not in the sense of Concept III. that they are the
same entities with different relations, but in the sense that they are different entities.
More difficulty will probably be felt in conceiving anything analogous to a line as a
simple unity. Here it is to be observed that a linear objective real does not replace
a line of points of ordinary geometry. On the contrary, the class of those points
(here called a punctual line), which have a given linear objective real as a common
member, is this ordinary geometrical line. A punctual line has parts and segments
in the ordinary way. The idea of a single unity underlying a straight line is not
wholly alien to ordinary language. The idea of a direction, as it could also be used
in non-Euclidian geometries where each line will have its own peculiar direction, may
be conceived as being that of a line taken as a unit. But it is unnecessary to
elaborate these considerations, as they have no relation to the logic of the subject.

In the dualistic Concept IVA. the particles form another class of objective reals in
addition to the linear objective reals. Each particle is associated at each instant
with some one point, that is, with some class of linear objective reals. Thus the two
points, respectively associated at any instant with two particles, have in common one
linear objective real. Thus, when mutually determined motions are considered, these
linear objective reals assume the aspect of lines of force. In the monistic Concept V.
the analogy of objective reals to lines of force arises in a similar way. In this case
particles, in the sense used above, do not exist. Corpuscles, to use another term, are
defined entities, analogous to the corpuscles of Concept I1I.; any general consideration
of them is best deferred till the definitions can be understood.

In Concepts IV. and V. the conception of an ether is (in a sense) rendered
unnecessary, or (in another sense) is largely modified. The collection of linear
objective reals (z.e., in Concepts IVB. and V., of all objective reals) now forms the
entity (the ether) which “lies between” the corpuscles of gross matter. These
corpuscles must be conceived as volumes with some peculiarity either of motion or of
structure. Of course it might be found useful, for the explanation of physical
phenomena, to assume that corpuscles of some sort are generally distributed between
bodies of gross matter, thus forming an ether in a secondary sense. The ancient
controversy concerning action at a distance becomes irrelevant in these concepts. In

3 Q2 ‘
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one sense there is something, not mere space, between two distant corpuscles, namely,
the objective reals possessed in common ; in another sense there is a direct action
between two distant corpuscles not depending on intervening corpuscles. In fact, the
premises common to both bands of disputants are swept away.

The Lissentral Relation.—In both of the Concepts 1V. and V. the essential relation
(R) is a pentadic relation, and has for its field both the class of instants of time and
that of linear objective reals, that is, in Concept V. the field is the complete class of
ultimate existents. The proposition Ri(abedt) can be read as the statement that the
objective real a intersects the objective reals b, ¢, d wn the order bed at the instant t.
This conception of “the intersection in order of three linear objective reals by a
fourth at an instant of time” must be taken as a fundamental relation between the
five entities. But the properties of the relation are not to be limited by the
suggestion of the technical name ‘intersection.” The axioms will be so assumed
that R:(abedt) implies that o, b, ¢, and d are distinet. Also, when points are defined,
it will be found that the axioms secure that « intersects b, ¢, and d in distinet points.
Furthermore, in general, b, ¢, and d are not co-punctual ; so that the case when a is
a transversal of the pencil b, ¢, d of co-punctual lines is only a particular case of the
satisfaction of Ri(abedt).

Definitions.—The notation of the general symbolism provides us with the symbol
Ri(5355°) for the class of linear objective reals, and with R:(---+;) for the class of
instants. But these symbols are long. Accordingly O will be defined to stand for
the class of linear objective reals, and T for the class of instants. Thus, in symbols,

0 =R(;;53:7) Df
T=R(""3) . Df

When ¢ particles” (in Concept IV.) are not being directly considered, the term
“ objective real ” will be used instead of *linear objective real,” or “ member of O.”

(i) Tee THEORY OF INTERPOINTS.™

*1. The theory of intersection-points (shortened into enterpoints) is required in both
of the Concepts IV. and V. Accordingly, it is convenient to investigate it before the
special consideration of either concept. In Concept IV. the interpoints are the points,
and there are no other points. In Concept V. the interpoints are, in general, only
portions of points, and a point may contain no interpoint or many interpoints. Thus

* From this point a continuous argument commences, and the sections and included propositions are
numbered by a combined integral and decimal system, the whole number for the section and the decimal
part for the proposition, also the symbol (¥) is placed before an integral number marking a section. All
the easier proofs of propositions are omitted, those proofs remaining being retained either as specimens, or
as containing some point of difficulty. The omitted proofs are often replaced by references to the
preceding propositions used in them, as a guide to their reconstruction. Note that “cf. ¥2-31-41-5” is
used as a shortened form of “cf. *#2-31 and *2-41 and ¥2-5.”


http://rsta.royalsocietypublishing.org/

A A

A\

/ y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

AL A

A \
1~

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

MATHEMATICAL CONCEPTS OF THE MATERIAL WORLD. 485

the axioms of Concept IV. (c¢f. *2) and those of Concept V. (¢f. *22) are two
alternative sets of hypotheses as to the properties of R in connection with which the
theory of interpoints, as given in the present *1, assumes importance. Some axioms,
involving interpoints in their statements, are identical in Concept IV. and Concept V.
These axioms are stated now in *1, and their simple consequences are deduced. The
theory of interpoints depends on that of “ similarity of position” in a relation. This
general idea will only be explained in the special form in which it is here required in
respect to the essential relation R.

*1'11. Definition.—An entity, v, will be said to have a position in the pentadic
relation R, simelar to that of the entity x, with @ as first term and ¢ as last (fifth)
term, if, whenever the relation holds between five terms, & being the first term and ¢
the last term, and either x or y or both occurring among the other terms, the relation
also holds when « is substituted for ¥ (whenever y occurs), and also holds when y is
¢

2? ‘
substituted for @ (whenever « occurs). The symbol R‘(“'x' > denotes the class of

entities with positions similar to that of x in the relation R, o being first term and ¢
last term. The definition in symbols is !

H(“Z?‘) = g 4(& ) : Ri(awny) . = . Ri(ayén) :
Ri(agent) . = . Ri(aéynt) : Ri(aéyxt) . = . Ri(aényt)} DI

a???

. 2274 .ol
*1:12. Proposition.—If y is a member of R;<a—50—->, then R‘( > i1s 1dentical

a???t
with R;< - > In symbols,

[t Jaltltt [t
oy e R(® ):R< ; >=R’< =0

/

"

o : ‘@t

#1138, Proposition.—a is a member of R‘< )

#1-21. Definition.—A class P of objective reals is called an wntersection-point on «

(shortened into interpoint on ), when there exists an objective real x, which is a

member of Ri(a;;;t), and P is the class whose members are o together with all the
2028 , ‘

members of the class R/ <a_w_t) The symbol Ri(a???¢) stands for the class of vnter-

points on o at the instamt t.  The definition in symbols is

Ri(a?721) = P ‘{(C»Ix) cwel(ass;e) P =day R;(a t>} ot

X

*1°22. Dqﬁnition.%P is called an snterpoint of the relation R at the instant ¢, if
there exists an objective real @, such that P is a member of Ri(a???). The symbol
intpnty, stands for the class of interpoints of R at the instant t. In symbols,

intpntg, = P {(qa) . PeRi(a???t)} Df
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*1+28. Proposition.—If P and Q are distinct members of Ri(a???¢), then « is the
sole member common to P and Q. In symbols,

F: P, QeRi(a???%) . P#Q.5.a=PnQ

Proof.—Cf. *1-11°12°21.

*1-81. Definition.—The interpoints B, C, D will be said to be in the interpoint-
order BCD at the instant ¢ with respect to the relation R, when there exist objective
reals @, x, ¥, 2, such that (1) B, C, D are members of Ri(a??%t); (2) = is a member of
B, y of C, z of D; (3) Ri(awxyzt) holds. The symbol R, (BCD¢) stands for the
statement that the interpoints B, C, D are wn the interpoint-order BCD at the instant
t with respect to the relation R. In symbols,

R/ (BCD?) . =. (g, , 4,2) . B,C,DeRi(a???t) . xeB.yeC.zeD . R(aaoy4t) Df

*1-32. I, intpntg, = R/ (5551)

Proof.—The class Ri(5;;5¢) is part (or all) of the class intpnty, (¢f. *1'31). Again
(¢f: *¥1-22), if B is a member of intpnty, objective reals a and x exist, such that = is a
member of Ri(a;;;t), and B is the interpoint possessing @ and z. Hence there are
objective reals y and z, such that esther Ri(aayzt) or Ri(ayxzt) or Ri(ayzrt). Hence
(¢f. *1-31), there are interpoints C and D, such that ozther R, (BCDt) or R:(CBDg)
or R{(CDB¢). Hence B is a member of R;,i(;;;¢).

The theory of interpoints has its chief interest when the following axiom is
satisfied. It is named intpnt Hp R.

*1-41, Intpnt Hp R is the statement that if A be an interpoint at the instant ¢,
and a be any member of A, then A vs o member of Ri(a?%%¢). In symbols,

Intpnt Hp R . = : Aeintpnty, . aeA .5, 4, . AeRi(a???%) Df

*1:42. Proposition.—Assuming intpnt Hp R, then if A and B are distinet members
of intpnty, A and B have either no members in common or one only. In symbols,

Fowintpnt Hp R .o A, Bemntpnty, . A2 B.5. AnBeOul.

Proof.—Cf. *1-2341.

The interest of the relation of interpoint-order (R,,) arises when the relation R
satisfies four axioms specifying the idea that Ri(abedt) expresses that a intersects b,
¢, d wn the order bed. These axioms (together with intpnt Hp R) will be employed
both in Concept IV. and in Concept V. They will be named « HpR, BHpR,
yHp R, §HpR.

*1'51. a Hp R is the statement that o is not @ member of Ri(a;;;t). In symbols,

aHpR.=.(a,t). aweRi(a;;;?) Df

*1+52. BHp R is the statement that Ri(abedt) emplies Ri(adcbt). In symbols,

BHpR. = :(a, b, c, d, t) : Ri(abedt) . > . Ri(adcbt) Df
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*1'53. y Hp R is the statement that Ri(abedt) and Ri(acdbt) are inconsistent. In

symbols,
yHpR.=:(a0,¢ d, t) Ri(abedt) . 5.~ Ri(acdbt) Df

*1-54. SHpR is the statement that Ri(abedt) vmplies that b and d are destinct.

In symbols,
SHpR.=:(a,,b,c,d,t):H(abcdt),:.b#d Df

*161. Proposition.—Assuming («, 8, v, 8) Hp R, then Ri(abedt) implies that a, b,
¢, d are all distinet. In symbols,

Foo(e, By, ) HpR .o : Ri(abedr) .o . a#b.a#c.axd. b#c.b#d.c#d

*1-62. Proposttion.—Assuming (e, B, vy, ) HpR, then R,;(BCDt) implies that
B, C, D are all distinet. In symbols,

Fo (e By, )HpR.o: Ry(BCDY) .5. B C.B=D.C#D

Proof.—By definition (¢f. *1:31) R,,(BCDt) implies that a, , y, 2 exist such that
B, C, D are members of Ri(a???t), = is a member of B, y of C, 2z of D, and Ri(axyzt).
Hence (c¢f. *1'61) a, @, y, z are distinet. Now if any two of B, C, D are identical,
e.g., B and C, then x and y are both members of B. Hence (¢f. *1°12:21), since a is
distinet from 2 and ¥, x can be substituted for y in Ri(awyzt). Hence Ri(awxxzt),
which contradicts *1°61.

#1+63. Proposition.—Assuming B Hp R, then R;,’(BCDt) implies R;/(DCBt). In

symbols,
F.. BHpR.>: R, (BCDt).>. R (DCBt)

Proof.-—Cf. *1-31-52.
*1-64. Proposttion.—Assuming (a, 8, y, 8) Hp R, then R;}(BCD¢) and Rm (CDB)

are inconsistent. In symbols,
Foo(a B, y, ) HpR . o: R (BCDE) . o. « R;}(CDBt)

Proof-—R,,/(BCDt) implies (¢f. *1°31) that a, x, y, z exist such that & is a common
member of B, C, D, = is a member of B, y of C, z of D, and Ri(axyzt), and B, C, D
are members of Ri(a??%¢). Hence (¢cf *1'61) a, @, y, z are all distinct. Similarly
also if R, '(CDBt), then o/, o, ¢/, 2’ exist with similar properties, viz., ' a member
of B, &c., except that Ri(a/y/?a't). Hence (¢f. *123'62) a and o are identical.
Thus Ri(axyzt) and Ri(ay'?2't). But (¢f. *¥1:21) « can be substituted for o/, y for ¢/,
and z for 2. Hence Ri(axyzt) and Ri(ayzet). But this contradicts y Hp R.

*1-65. Proposition.—Assuming (intpnt, «, 8, v, 8) Hp R, the classes Ri(;*"¢) and
Ri(;;;;t) are identical. In symbols,

" (intpnt, @, B, y, ) Hp R .o Ri(;-++1) = Ri(55550)
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Proof—If x is a member of Ri(-;;;¢), ¥ exists such that = is a member of
Ri(y;;3¢); also (¢f *1°61) x and y are distinet. Hence (¢f. *1-21) P exists such that
it is a member of Ri(y???%¢), and @ is a member of it. Hence (cf. *1'41) P is a
member of Ri(x??%t), and hence (¢f. ¥1'21) % is a member of Ri(x;;;¢). Hence = is a
member of Ri(;:*t).

*171. Proposition.—Assuming « Hp R, every interpoint possesses at least two
members. In symbols,

F.oaHpR.o: Aeintpnty,.o. NetA =2

Proof —Cf. *113-21:22°51. |
*1-72. Proposition.—Assuming (intpnt, «, B, y, 8) Hp R, then on every objective
real there exist at least three interpoints. In symbols,

F.. (intpnt, ¢, B, y, ) HpR.o: aeRi(;;551) . o. NeRi(a???%t) = 3

Proof:—Cf. *¥1:21-31°62°65.
*173. Proposition.—Assuming (intpnt, &, B, v, 8) Hp R, then, if there are any
objective reals, the interpoints are not all on any one objective real. In symbols,

[. (intpnt, &, B, y, ) Hp R . o: I Ri(5;55¢) . o . ! {intpnty, - Ri(a???t)}
Proof —Cf. *1-42°71°72.

(iii) Concerr 1V,

*2. This concept bifurcates into two alternate forms, namely IVA. and IVs.
Concept I'VB. is related to IVA. just as Concept II. is related to the classical concept.
Thus Concept IVA. is dualistic, and Concept IVE. is the monistic variant of it. Both
concepts can initially be considered together as Concept IV. In Concept IV. the
essential relation (R) is pentadic, one of the terms being an instant of time. Ri(abedt)
can be read as a intersects b, ¢ and d, in the order bed at the instant ¢£. The class of
those entities, appearing among the first four terms in any instance of the relation
holding, is called the class (O) of “linear objective reals.” The remaining class of
objective reals, required for Concept IVA., is called the class of “ particles.”

The geometrical points of this concept are simply the interpoints of R, as defined
above (¢f. *1). During the consideration of this concept they will be called points.
The further definitions, beyond those of *1, required for a concise statement of the
geometrical axioms are almost exactly those of Concept I., with the R, of this
Concept IV. written for the R of Concept I., and modified by the mention of ¢, as in
Concept III. This mention of ¢ can be managed in a similar (though not identical)
way to that in Concept III. by writing

#2-01. R/ (ABC) = R,/(ABCt) | Df
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Then the definitions of Concept I. will be assumed to apply to R, For example,
the punctual line joining the pownts A and B is the class of points which is the logical
sum of R/(;AB) and R/ (A ;B) and R;(AB;) together with A and B themselves. Its
symbol is R;/AB. The definition in symbols is

R/AB = R;(;AB) u R;/(A;B) uR/(AB;)u A u B Df

Tt will follow (cf. *1-2881) from the axioms that a punctual line is the class of those
points with some member of O as sole common member. The other definitions can be
managed in like manner, only in the symbolism a suffix to a suffix will be avoided by
writing A /(ABC), and so on, instead of ay’(ABC), and so on.

The Axioms.—The earlier axioms have to be modified from those of Concept I., but

the later axioms are simply those of Concept I. with the R of that concept replaced
by the R, of Concept IV.

IHpR. =:teT;‘35.OcR;(;;;;t) Df
IIHpR . =. q!R(:;) [ee, q!T] Df-
IIMTHpR . =.aHpR , Df (¢f *1'51)
IVHpR.=.B8HpR Df  (¢f *1'52)
VHpR.=.yHpR , Df (¢f *1'53) «
VIHpR.=.8HpR Df (¢f: *1°54)
VIIHpR . =.intpnt Hp R . Df (¢f *1-41)
VIIIHpR.=..(A,B,C) .~ A, B, CeR/(55;5) A#B.A=C.B=C.
m!(AnBnC).o:R/)(ABC). V.Ri(BCA).V.R;/(CAB) Df
IXHpR.=:(A, B): A, BeRj(;5;) . A#B.>.q!R/(AB;) . Df

XHpR.=:(A, B, C, D, E): ap/(ABC).R/(BCD).R,/(CEA).>.
1! {R;DEnR/(A;B)} Df

XIHpR.=:teT .o . (gp, D). peple, . DeR(555) =p Df
XIIHpR.=.(g A, B, C, D). Ri(5;;) c g, (ABCD) Df
XIIIHpR . =. the axiom of continuity, ¢f. XII Hp R of Concept I. | Df
XIVHpR . = . aepleg, . aeling nelsa .o, ,: (5C) : Cea:

I,Uelingnels‘a. Celnl . lna=A.'na=A.5,,.1l=0 Df

Note that only IHp R and XIHpR require the hypothesis ¢eT ; in all the other
axioms there is a hypothesis which can only be true when ¢eT. For the purpose of
comparison with the axioms of Concept L., the following propositions are required :—

VOL. CCV.—A. 3 R
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*211 P (IIL IV, V, VL VI HpR . 5: teT . o. NeRi(55;) = 2
Proof.—Cf. ¥1-72.

*2:21. .. IVHpR .o: R/ (ABC) .o . R;/(CBA)
Proof—Cf. *1-63.

*222. . (IIL IV, V, V)HpR .o : R;(ABC).>. -~ R;}(BCA)
Proof.—Cf. *1-64.

*#223. . (IILIV,V, V) HpR .5: R/(ABC) .o0. A= C
Proof.—Cf. *¥1-62.

*2:81. Proposition.—Assuming (VII, IX) Hp R, if A and B are two distinet points
at the time ¢, they possess one, and only one, common member. In symbols,

Fo(VILIX)HpR .o: A, BeRi(;5) . A= B.o. AnBel

Proof.—Cf. ¥1-31°42 and (VI1I, IX) Hp R.

*2:32. Proposition.—Assuming (VII, VIIT, IX) Hp R, a line at any instant ¢ (z.e., a
member of ling,) is the complete class of points (interpoints) possessing some linear
objective real. In symbols,

L (VIL VIIL TX) Hp R . 5 . ling = p[(510) - 0 e Ri(53530) . p = A {A e Re(533) . we A}]

Proof.—Cf. VIIT Hp R and *2-31.

Propositions #2-31:32 effect the identification of the punctual line, as defined above,
and the class of points on some linear objective real. Thus a straight line considered
as an entity with parts is a punctual line, and considered as a simple unit is a linear
objective real.

%288, Proposition.—Assuming (VII, VIIIL, IX) Hp R, if C and D are two points in
the punctual line R;AB, then A is a point in the punctual line R;CD. In symbols,

P (VIL VIILIX) HpR.5: C,DeR/AB.C=D .5. AeR;CD
Proof.—Cf. *2-32,

#2441, [ . (III-IX)HpR.5:teT.5. (A, B,C) . a(ABC)

Proof—Cf. ¥1-72°73.%232.

*2'5. Proposition.—Assuming (III-XIV)HpR of Concept IV., then all the
axioms of Concept I. hold when the R, of Concept IV. is substituted for the R of
Concept L., and ¢ is a member of T. ‘

Proof.—Cf. #*2:11-21'22'23'33°41 and (IX-XIV)HpR (of Concept IV.) and
(I-XIT) Hp R of Concept 1.

It will be noticed that IHpR (of Concept IV.) is not required in the above
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comparison. It does not belong to the purely geometrical side of the concept, but is
a necessary part of the ¢ physical” ideas. IIHp R (of Concept IV.), though it does
not occur explicitly in the above comparison, is required to give the geometry
“ existence.” Thus the geometry of Concept IV. requires thirteen axioms.

For the purpose of the transition to projective geometry (cf. VEBLEN, loc. cit.), it is
now unnecessary to conceive a new class of “ projective points.” The points already
on hand are exactly the entities required. All that is necessary is to define the class
of those linear objective reals (¢f. XIVHpR), coplanar with any given linear
objective real and not intersecting it, as the point at infinity on that objective real.
Then with these new points at infinity, and the old points, the complete set of
« projective points” is obtained.

The Extraneous Relation.—For the purpose of the definition of motion, one
extraneous tetradic relation is required, exactly as in Concept III. Also the same
hypotheses must hold respecting it. The three mutually rectangular and intersecting
punctual lines, thus indicated at each instant, are to be taken as the “ kinetic axes,”
and all motion measured by reference to them. A given set of kinetic axes does not,
in general, correspond to the same three linear objective reals at different instants of
time. v :

Matter.—It is necessary to assume that the points in this concept disintegrate, and
do not, in general, persist from instant to instant. For otherwise the only continuous
motion possible would be representable by linear transformations of coordinates; and
it seems unlikely that sense-perceptions could be explained by such a restricted type
of motions. We have therefore to consider what, in this concept, can represent the
permanence of matter. A ¢ corpuscle,” as we may call it, may be eonceived to be a
volume with some special property in respect to the linear objective reals  passing
through” it. This is the procedure adopted in Concept V.; and the methods of
overcoming the obvious difficulties which suggest themselves will be considered in
detail there. It is sufficient here to notice that, in this Concept IV., the special
property of the volume must relate merely to the motion of the objective reals. For
the only alternative is to make the property consist of the permanence of the points
within the volume. But then the difficulty of permanent collineations, mentioned
above, recurs. To find a special property of motion, we require a kinematical science
for linear objective reals in this concept analogous to the kinematical parts of
hydrodynamics. In the absence at the present time of such a science, we proceed to
other alternatives. :

Concept I Va.—Conceive a class of particles, each particle being associated at each
instant with some point, but not necessarily each point with some particle. Then
the particles represent the *“ matter” which “occupies” space. Laws of motion must
then be stated (i) for the particles and (ii) for the linear objective reals. Also the
motion of the particles may be conceived to be influenced by that of the linear
objective reals, and vice versd. The endeavour to state such laws appears to reduce

' 3R 2
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itself to rewriting with appropriate changes a chapter of any modern treatise of
electricity and magnetism. It would seem necessary to subdivide the class of
particles into * positive” and “negative” particles, a charged volume containing an
excess of one type. The conception of an ether conveying lines of force is replaced
by the class of the linear objective reals. The details can be managed much as in the
analogous case of Concept V., considered later. An indefinite number of extraneous
relations are required to “locate” the particles, just as in Concept I. This concept
(as thus developed with “ particles”) is not completely a ““linear” concept. It isa
hybrid between the ¢linear” and * punctual” concepts. In its dualism it is not
superior to the classical concept. But, in possessing moving linear objective reals as
well as moving particles, it is richer in physical ideas.

Concept IVs.—In this concept, just as in Concept IL, each triadic extraneous
relation of Concept IVA. between an instant of time, a particle, and a point is
replaced by a dyadic extraneous relation between a point and an instant of time.

Parr IV.—(1) TeE THEORY OF DIMENSIONS.

*3. Concept V. depends upon a treatment of the theory of dimensions different
from that which at present obtains. The theory here developed is relevant to any
definite property which (1) is a property of classes only, and (2) is only a property of
some classes. It will be clearer, and no longer, to explain the theory in its full
generality, and in Concept V. to make the special application required.

This general theory of dimensions may, perhaps, have a range of importance
greater than that which is assigned to it in the sequel. In *10 a set of hypotheses
are given respecting the property ¢ ; and when these are true of ¢, the propositions
and definitions of *3 to *8 acquire importance and emerge from triviality, also in this
case further deductions of propositions can be made. The Concept V. to which this
theory is applied is explained in the definitions of *20 and the axioms of *22. In
this Concept V. a special property ¢ is taken, which is termed ¢ Homaloty” (cf’
*20°11°12), and (¢f: *22) in the axioms a relation R is considered such that
“ homaloty,” defined in respect to R, has the properties of the axioms in *10.

*3:01. Definition.—If $la is some proposition involving the entity x, which may
be varied, so that ¢!z and ¢!y make the same statement (¢) about = and y
respectively, then any entity z, for which ¢!z is true, is said to possess the property ¢.

*3:02. Definition.—A ¢-class is a class with the property ¢, that is to say, if w is
a ¢-class, then ¢lu is true.

*3:11. Definition.—The ¢-region is the logical sum of all classes which possess the
property ¢. The symbol O, will denote the ¢-region. The symbolic definition is

0, = Ui {plu} Df

*3:12, The common ¢-subregion for u is that class which is the common subclass
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of all ¢-classes with the class u as a subclass. The symbol em,‘w will denote the
common ¢-subregion for ». The symbolic definition is

emy‘u = n‘v{plv . uecls‘v} - Df

Note.—If no class v, with the property ¢ and containing u as a subclass, exists,
then cm,‘u will be the class of all entities. But if a class v exists which has the
property ¢ and contains u, then em,‘u is a subclass of O,. In the sequel it will be
found that this latter is the only relevant case for our purposes.

Elucidatory Note.—Assuming our ordinary geometrical ideas, let the property of
the ¢ flatness” of a class of straight lines be defined thus: A class of straight lines is
flat, either, when it is a necessary and sufficient condition for membership that
a straight line meets two members of the class, not at their point of meeting, or,
when the class is a unit class with one line as its sole member. Thus a plane (as
a line-locus) is flat, a three-dimensional space (as a line-locus) is flat, and so on. Now
let the property ¢ in the above definition be the property of flatness. If then u is a
class consisting only of two straight lines, the common ¢-subregion for v is either a
three-dimensional space or a plane, according as the two lines are not, or are, coplanar.
Also in a space of higher dimensions than three, if  be a class consisting of three
straight lines, the common ¢-subregion for » may be either (1) a plane, or (2) a three-
dimensional space, or (3) a four-dimensional space, or (4) a five-dimensional space,
according to the circumstances of the lines. It will be noticed that, in the application
of this theory of the common ¢-subregion to the particular case of geometrical flatness,
the common ¢-subregion of any class of lines is itself flat. But this is not, in general,
the case when any property not flatness is considered. It is this peculiar property
of flatness which has masked the importance in geometry of the theory of common
¢-subregions.

*3-121. Definition.—Two classes » and v have ¢-equivalence if em,‘u = emy‘w.
The class of those classes (including w itself as a member), which have ¢-equivalence
with u, is denoted by equiv,‘w. The symbolic definition is

N €y — ) oy — ¢
equiv,‘u = v (cmy‘v = cmyu) Df

*3:18. Definstion.—A. class u (not the null class) is ¢-prime, when, if v be any
proper part (part, not the whole) of u, v is not ¢-equivalent to . The class of those
classes which are ¢-prime will be denoted by the symbol prm, The symbolic
definition 1s

prm, = u{qlu :vcu . ql(u=v).o,.cm,‘v = cm, u} Df

LElucidatory Note.—With the assumptions of the elucidatory note on em,‘wu, it is at
once obvious that two straight lines form a ¢-prime (where ¢ is flatness) class,
whether they are or are not coplanar. But if u consist of three straight lines, (1) u
is not ¢-prime if cmy‘u is a plane, (2) u is not, in general, ¢-prime if cm,‘u is a space
of three dimensions, but u is (in this case) ¢-prime if the three lines are concurrent,
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(3) u is ¢-prime if cm,‘u is of four dimensions, (4) u is ¢-prime if ecmy‘u is of five
dimensions.

*3-21. The ¢-dimension number (or the ¢-demensions) of a class u is the greatest
of the cardinal numbers of all classes (including possibly u itself) which are both
$-equivalent to u and ¢-prime. The ¢-dimension number of » will be denoted by
dim,‘u. The symbolic definition is

dim,‘w . = : (1) : @ e N¢“(prmy n equivy‘u) : p e Ne“(prmy nequivy‘u) .o, . p=a  Df

Elucidatory Note.—With the assumptions of the previous elucidatory notes (where
¢ is flatness), we see that those ¢-prime classes, the common ¢-subregions for which
are spaces of three dimensions (as ordinarily understood), are all pairs of non-inter-
secting lines and all trios of concurrent non-coplanar lines; also no class of four lines
in such a space can be prime. Thus three is the greatest cardinal number of any
¢-prime class of lines for which the common ¢-subregion is such a space. Hence,
according to the above definition, three is the ¢-dimension number of the space.

*3:22. Definition.—A. class u is ¢-axial when (1) it is ¢-prime and (2) its cardinal
number is equal to its ¢-dimensions. The class of $-axial classes is denoted by the
symbol ax,. The symbolic definition is

ax, = u{ueprm, n dim,‘u} Df

Elucidatory Note.—With the assumptions of the previous elucidatory notes (where
¢ is flatness), we see that two coplanar lines form a ¢-axial class, and so also do three
concurrent non-coplanar lines.

#3938, Definition.—A class u is ¢p-maximal when (1) all those of its subclasses
(possibly including u itself), which are both ¢-prime and ¢-equivalent to u, are
¢-axial, and (2) there are such subclasses. The class of ¢-maximal classes will be
denoted by mx,. The symbolic definition is

mx, = % {5 !(prm, n equiv,‘w ncls‘u) . prmy nequiv,‘unels‘vcax,}  Df

Elucidatory Note.—Referring to the previous elucidatory notes (where ¢ is
flatness), we see that any set of coplanar lines form a ¢-maximal class; similarly any
set of concurrent lines form a ¢-maximal class.

*3:31. Definition.—The ¢-concurrence of w and v, where u and v are classes, is that
subclass of u (possibly u itself), such that any couple, formed by any member of it
and any member of v, is ¢-axial. The ¢-concurrence of u with v is denoted by the
symbol #,‘v. The definition in symbols is

v =2 {reu:yev.o, . ‘v Uy eax,} Df

The ¢-concurrence of the ¢-region (O,) with any class v will be written O, v
instead of (N)%‘ . '

Elucidatory Note—Referring to the previous elucidatory notes (when ¢ is flatness),
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we see that, when » and v are classes of straight lines, @, v (i.e., the ¢-concurrence of
u with v) is that complete set of lines of » which is such that any member of it is
coplanar with every member of ».

*3-32. Definition.—A class u is a self-¢p-concurrence if the ¢-concurrence of u with
itself is the whole class u. The class of those classes which are self-¢-concurrences
will be denoted by conc,. The symbolic definition is

conc, = v {u = @, u} Df

*3-88. Definition.—ax will be said to be ¢-concurrent with y, if the class composed
of x and y only (v.e., the class ‘U 'y) is $-axial.

*3:41. Definition.—A ¢-plane is a class u such that there exists a class v, which
(1) is ¢-axial, (2) is composed of two members only, and (3) is such that u is the class
em,‘v. The class of those classes which are ¢-planes is denoted by ple,, The
symbolic definition is

ple, = % {(qgv) . ve2 nax, . u = cm, v} Df

Note.—It requires an axiom to establish that a ¢-plane is a self-¢p-concurrence
(cf. *16°11), |

*3:42. Defination.—A class u is a ¢-pownt, if there exists a class v, which (1) is
¢-axial, (2) is composed of three members only, and (3) is such that u is the ¢-con-
currence of the ¢-region with v. The class of those classes which are ¢-points is
denoted by the symbol pnt,. The symbolic definition is

pnt, = 4 {(gv) . ve3 nax, . u = O v} Df

Note.—It requires axioms to establish that a ¢-point is ¢-maximal and is a self-¢-
concurrence (cf. *14:11'12). Also note that this definition does not apply unless the
number of dimensions of O, is at least three, but then applies unchanged however
great this number may be.

Elucidatory Note—Referring to the previous elucidatory notes (where ¢ is
flatness), we see that a ¢-point now becomes simply that class of straight lines
concurrent at a point. The analogy with KLrIN’s “ideal,” or “ projective,” points is
obvious. Only when the present theory is applied, it will be found that the original
“ descriptive ” point has entirely vanished.

*3:43. Definition.—A class is ¢-coplanar if there exists a ¢-plane of which it is a
subclass. The symbol cople,!u denotes that the class u is ¢-coplanar. The definition

in symbols is
copleylu . =. (g p) . peple, . ueclsp Df

*3:44. Definition.—A class is ¢-copunctual if there exists a ¢-point of which it is a
.subelass. The symbol copnt,!u denotes that the class u is ¢-copunctual. The
definition in symbols is
copntlu . =. (gP) . Pepnt, . ueclsP - Df
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General Deductions Concerning Dimensions.

A large chapter of interesting propositions concerning the entities defined above in
*3 can be compiled. The following are chosen as being directly wanted in the
subsequent investigations :—

*4. On Common ¢p-subregions.

*4:21. Proposition.—If v is a subclass of u, then em ‘v is a subelass of emy‘w. In
symbols,

Fiocu.o.emyfvcem,u
Proof.—Cf. *3-12.

*4-25. Proposition.—A class u is itself a subclass of em,‘w.  In symbols

M. ucemy‘n

Proof—Cf. *3-12.

*4-27. Proposition.—If w is a class with the property ¢, then u is identical with
em,‘u.  In symbols,

Frdlu.o.u=cm,u

Proof.—-Cf. *3°12. ‘

*4:28. Proposition.—If there exist two classes, both with the property ¢, which
possess no common member, then ecmy‘A is itself the null class (A). In symbols,

Fr(gu,v) . unv=A.dlu.dlv.o. cmA=A

Proof.—Note that em,‘A is the common part of all ¢-classes.

Corollary.—If x and y exist such that they are distinet, and the two unit classes
with them as members respectively each have the property ¢, then em,‘A is A.

Note that when *4:28 is appealed to, it will be this corollary which is directly used.

*4:31. Proposition.—The common ¢-subregion for the common ¢-subregion for u is
the common ¢-subregion for ». In symbols,

ol < < — [4
. emy‘emyfu = emy‘u

Proof.—For em,‘u is contained in every ¢-class containing w. Hence (c¢f. *3:12)
em,‘em,‘w is contained in emy‘w. Also (¢f. *4:25-21) emy‘w is contained in
cm,‘ emy,‘ .

*4-32. Proposition.—If w and v are ¢-equivalent, and w is any class, then the
common ¢-subregion for the logical sum of u and w is identical with the common
¢-subregion for the logical sum of v and w. In symbols,

[:emy‘u = emyv. 5. cm, (v uw) = cm,(vuw)

Proof.—For (c¢f. *4-21) em,‘v is contained in em,‘(vuw), and hence (hypothesis)
em,‘u is contained in em,‘(vuw), and hence (¢f. *4'25) wuw is contained in
emy‘(vuw), and hence (¢f. ¥4:21) em,‘(u U w) is contained in em,‘em,‘(vuw), and
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hence (cf. *4-31) cm,‘(» U w) is contained in cm,‘(vuw). Then interchanging v and v,
and combining the two results, the proposition follows.

The following propositions are not cited subsequently, so their verbal enunciations
are omitted :— ‘

*4:41. . em,(cmy,‘u nemy‘v) = em,‘u n em,‘v

*4:42. |, n‘em,“p = emyfn ‘em,“p

*4-43. [. emy‘(emy, v U em,‘v) = cm, (u U v)

*4:44. [, em,‘ U ‘em,“p = cmy‘ U ‘p

*5. On ¢-Primes.

*5:28. Proposition.—If u is a ¢-prime, and v is a subclass of «, and is not the null
class, then v is a ¢-prime. In symbols,

F:ueprmy . vecls‘u . qlv.o. veprm,

Proof.—For if w be any subclass (not the null class) of v, then (¢f *3-13)
cm,‘(w=w) is not emy‘u. But (u-w) can be written {(v=w)u (x=v)}, and w can be
written {vu (v-v)}. Hence cm, {(v=w)U (u=v)} is not em, {vu(u=v)}. Hence
(cf. *4-32) emy‘(v=w) is not cm,‘v. Hence (¢f. *3°18) v is a ¢-prime.

Note.—This theorem, together with *4-:31-32, is the foundation of the whole theory.
It is remarkable that it requires no axiom concerning ¢. The companion theorem
(¢f. *12°42), with ax, substituted for prm,, requires axioms respecting ¢.

*5281. Proposition.—Necessary and sufficient conditions, that a class « may be
¢-prime, are: (1) u is not the null class, and (2) if = be any member of u, then
cmy‘(u=1‘) is not cm,‘u.  In symbols,

Fooqlueen .o, . emy (u=1'2) # emy‘u : =. ueprm,

Proof.—Cf. *3:13 and *4-21.

*5:288. Proposition.—If cm,‘A = A, then every unit class is a ¢-prime. In
symbols,

[:emyA=A.5.1cprm,

Proof.—Cf. *¥3:18 and *4-25.

*5'285. Proposition.—If x and y are distinet, and the unit classes '« and ‘y have
the property ¢, then the class, which is the couple composed of x and v, is a ¢-prime.
In symbols,

Fraezy. dlvw. pli'y.o. ‘o uyeprm,

Proof.—Cf. ¥3'18 and *4:25:27.

*6. On ¢-Dimensions and ¢-Awxial Classes.

*6-28. Proposition.—The ¢-dimension of u, if there is such an entity, is a cardinal
number not zero. In symbols,
Mo (Ex)Ydim, ) .o . dim,‘u e Ne=i 0
Proof.—Cf. *3-21.
VOL. CCV.—A. 38
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*6°25. Proposition.—If v is a ¢-prime and has a ¢-dimension number, then the
cardinal number of v is less than, or equal to, dim,‘v. In symbols,

[ (BEx)Ydim,v) . veprm, . 5. Nefo = dim, ‘v

Proof.—Cf. *3-21.
*6-26. Propositron.—If v is ¢-axial and is ¢-equivalent to u, then the cardinal
number of v is equal to dim,‘w. In symbols,

F:veax, nequivy‘u .o, Ne‘v = dimy‘u -
Proof.—Cf. *3:21-22.

*8. On ¢-Concurrences.

*8:21. Proposition.—If u is contained in w, then the ¢-concurrence of u with v is
contained in the ¢-concurrence of w with . In symbols,
' Frucw.o. @, vc®, v
Proof-—Cf. *3-31. '
*8°22. Proposition.—If v is contained in w, then the ¢-concurrence of » with w is
contained in the ¢-concurrence of » with v. In symbols, '

Fivcw.o. dfwcd,fv

Proof.—Cf. *3-31.

*10. Geometrical Properties.—A property ¢ is called geometrical if' it satisfies the
five axioms (N, g, v, m, p) Hp ¢ stated below. The axiom v Hp ¢ takes the special
form for three dimensions. It is to be noticed that three dimensions is the lowest
number for which a ¢-point (¢f. #3°42) can be defined. The reasoning can be applied
to higher dimensions, only more elaborate inductions and an extra axiom are required.
Other axioms and definitions are wanted to enable all the propositions of projective
geometry to be proved. These will not be considered here as such an investigation
would involve some repetition when we come to Concept V. The class O, is the class
of straight lines of the geometry, conceived as simple unities. The class pnt, is the
class of points, each point being a class of lines. The class ple, is the class of planes,
each plane being a class of lines.

*10°1. M Hp ¢ is the statement that O, has the property ¢. In symbols,

AHpo.=.4'10, Df
*10°2. p Hp ¢ is the statement that, ¢f @ is any member of O,, the wnat class v has
the property ¢. In symbols,
pHp¢.=:2e0,.o,. ¢lv Df

*10'3. vHp ¢ is the statement that the ¢-dimension number of O, is three. In

symbols,
vHpé . =.dim;0, =3 - Df
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*10-4. 7 Hp ¢ is the statement that, of u is a subclass of O,, and v vs -axial and
contained 1n cm,‘u, then there exists a class w ( possibly the null class) such that the
logical sum of v and w s ¢-axial and ¢-equivalent to w. In symbols,

mHp¢ . =:uecs‘O, .veax, ncls‘em,‘u . 5, ,. (Jw) . vUweax, nequiv,‘uw  Df

*10'5. p Hp ¢ is the statement that if w and v are both ¢p-axial, and if they possess
at least two members in common, then thewr logical sum is ¢p-maximal. In symbols,

pHpd.=:uveax, Ne‘(unv)=2.o,, . uUvemx, Df

Elucidatory Note.—Referring to the previous elucidatory notes (where ¢ is flatness),
we see that *10°4 in effect assumes that a line can always be added (1) to two con-
current lines to form a set of three concurrent non-coplanar lines, and (2) to one line in
a plane to form a set of two concurrent lines in that plane.' Also *10°5 assumes that,
if two sets of three concurrent lines have two members in common, the four lines are
concurrent.

Deductrons from the Axioms.

*11. Preliminary Propositions.

*11-11. Proposition—Assuming (A, »)Hp ¢, O, has at least three members. In

symbols,
F:(\v»)Hpo.o.NcO,=3

Proof.i—Cf. *#4-27 and *10°1°8. v

*¥11°12. Proposition.—Assuming (\, p, ») Hp ¢, ecm,‘A is the null class (A). In
symbols,

Fr(\pov)Hpd .o cmyA = A

Proof—CYf. *4-28 and *10-2 and *11°11.

*¥11-21. Proposition.—Assuming (A, u) Hp ¢, all ¢-prime classes with more than one
member are contained in O, In symbols, '

Foo(\p)Hpo.o:veprm, . New > 1.5, wecls‘O,

Proof.—For if  is not a member of O, then cm,‘x is the class of all entities.
Hence (cf. *4:21-27 and *10°12) the conclusion follows.
- %12, On ¢-Awxial Classes and ¢-Dimensions.

*12°11. Proposition.—Assuming (X, p, v) Hp ¢, every unit class whose single
member belongs to O, is ¢-axial. In symbols,

Foo\pv)Hpd.o:2e0, .0, . veax,

Proof-—Cf. ¥3:21'22 and *4-27 and *5-233 and *10-2.
*12:12. Proposition.—Assuming (N —=) Hp ¢, every subclass of O,, not the null
38 2
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class, has a set of ¢-axes. (Note.—A class which is ¢-axial and ¢-equivalent to a
class u is said to be a set of ¢-axes of u.) In symbols,

Foo(AN=—m)Hp ¢ .o:ueclsO, . qptu . 5. q!(ax, nequiv,w)

Proof.—Since there is at least one member of u, there is (¢f: ¥12°11) a ¢-axial class
contained in u. Hence (¢f ¥10°4) this class can be augmented so as to become a set
of ¢-axes of u.

*12:18. Proposition.—Assuming (A\—#) Hp ¢, if » and v are subclasses of O,, and
v is not the null class, and cm,‘v is contained in em,‘u, then there exist two sub-
classes of O,, w and w/, say, such that w is a set of ¢-axes of v, and wuw' is a set of
¢-axes of u. In symbols,

“

Foo(A=—7)Hpd.5:u, veclsO, . 5plv. emy‘vecem,u . 5.
(qw, w') . weax, nequiv,v . wuw'e ax, n equiv,‘u.

Proof.—Cf. ¥10°4 and *12-12.

*12-21. Proposition.—Assuming (A—7)Hp ¢, if u and v are subclasses of O,, and
v 18 not the null class, and cm,‘v is contained in em,‘w, then the ¢-dimension number
of v is less than, or equal to, the ¢-dimension number of . In symbols,

Foo(A=7)Hp¢ .o:u, veclsO, . v . em,v cemy‘u. o . dim, v = dim,‘u.

Proof.—From *6:26 and *12-13, w and «' exist (assuming wnw' = A) such that
Ne‘w = dimy‘v and Ne‘w+Ne‘w' = dim,‘v.  Hence dim,‘v < dim,‘u, unless ' is the
null class, or unless the numbers are not finite, in which cases dim,‘v = dim,‘w is
possible.

*12-23. Proposition.—Assuming (A=) Hp ¢, if v and v are subclasses of O,, and v
is not the null class, and em,‘v is contained in cm,‘w, then, if dim,v = dim,‘w,
we have ecmy‘v = em,‘u, and conversely. In symbols,

Fi:(A=m)Hpd.o."v,ueclsO, . v . cmvcem,u . o:
em,‘v = emy‘u . = . dim,‘v = dim,‘u

Proof.—Assuming dim,‘v = dim,‘%, and also assuming the notation of the proof of
*12-21, then w and w' are such that (1) w is ¢-equivalent to v and wuw' to u,
(2) Ne‘w = dim,‘v and Ne‘w+New' = dim,‘w.  Hence, by hypothesis and (2),
Ne‘w+Ne‘w' =Ne‘w.,  Also (¢f. *¥10°8 and *¥12°21) Ne‘w+Ne‘w’ =38. Hence Ne‘w' =0,
that is, w' = A.  Hence from (1), em,‘u = em,‘v. The converse is obvious.

*12:38. Proposition.—Assuming (A\—=) Hp ¢, if u and v are subclasses of O,, and v
is not the null class, and em,‘v is contained in, but is not identical with, cm,‘u, then
dim,‘o is less than dim,‘u. In symbols,

Foo(AN=7)Hpo .o:u, @ecls‘0¢ . g[!v:. emy‘ v cemy‘u .

em,‘v 7 emy‘y . o . dimy‘v < dimg‘e
Proof.—Cf. *¥12-21-28. :
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The following proposition should be compared with *12:12 :—

*12:37. Proposition.—Assuming (A=) Hp ¢, if u is a subclass of O,, and is not the
null class, there exists a subclass of % which is ¢-prime and ¢-equivalent to w. In
symbols,

Foo(N\=m)Hpe .o:uecls’O, . gyl . o. q!(prm, ncls‘u n equiv, )

Proof.i—From *12°12°21, u is either of one, or of two, or of three ¢-dimensions.
If % is of one ¢-dimension, the conclusion follows from *5-233 and *10°2 and *11-12.
If w is of two ¢-dimensions, then (¢f. *5:235 and *10°2) any two members of it form a
¢-prime class, and (¢f. *12°21) the ¢-dimension number of this class is not greater
than two, and hence (cf. *6:25) it is two, and hence (¢f *12:23) this subclass is
$-equivalent to u. Ifu is of three ¢p-dimensions, it must contain at least one subclass
v consisting of two members, and, as before, v must be ¢-prime. If v is of three

“¢-dimensions, then (¢f. ¥12:23) » and v are ¢-equivalent. If v is of two ¢-dimensions,
then there is a member of u, x say, which is not a member of cm,‘v. Then, either
vU iz is $-prime and (¢f. *12:28) ¢-equivalent to u, or the class composed of = and
some one (not necessarily any one) of the members of v is ¢-prime and ¢-equivalent to u.

The following proposition should be compared to *3-13 and *12'33 :—

*12+41. Proposition.—Assuming (M- 7)) Hp ¢, if u is ¢-axial, and v is a subclass of
u, and both v and (x=v) are not the null class, then dim,‘v is less than dim,‘w. In
symbols,

Foo(A\-m)Hpé .o:ueax, . vecls‘u.qlv. Qtl(@c-v) . 2. dimy‘v < dim,‘u

Proof.—Cf. ¥3:18 and *4'21 and *11-21 and *12-21-23.

The following proposition should be compared to *5:23 :—

*12:42. Proposition.— Assuming (A —) Hp ¢, then, if » is a subclass of O, and is
$-axial, any subclass of u, not the null class, is ¢-axial. In symbols,

Foo(A\-7)Hpo.o:ueax,ncls‘O, . vecls‘u . lv.o. veax,

Proof—From *6:26 we have Nc‘u = dimy‘u; from *523 and *625 we have
Ne¢‘v = dim‘v.  Hence (¢f. *12°41), if v is not identical with , we have
Netv=dimg'v < Ne‘w . . . . .. . . . (1)

Firstly, assume that v omits one member of = only. Then Nc‘v+1 = Ne‘u.
Hence, from (1), N¢‘v = dim,‘v, and hence (¢f. *¥3:21) v is ¢-axial.

Secondly, if v omits two members of u, then it is a unit class, and (¢f. *¥12°11) is
¢-axial.

It is convenient to conclude this section (*12) with three theorems which are
fundamental to the theory of ¢-points and of ¢-planes.

*12'51. Proposition.—Assuming (A—m) Hp ¢, if v is of two ¢-dimensions, and
and % are members of cm,‘w, then the class composed of = and y is ¢-axial and is a
subclass of O;.  In symbols,

Foo(A=7)Hp¢ .o:dimu =2 .2, yeom,u .. auyeax, ncls'O,
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Proof—em,‘u is contained in O, (¢f. *4:21-27 and *10°1 and *11-21). If « and y
are identical, ¢f. *12°11. If x is distinct from y, then ¢f *¥3-21 and *¥12°11-21-28.

*12°52. Proposition.—Assuming (A — ) Hp ¢, if © has three members only, and is a
self-¢-concurrence, and its ¢-dimension number is three, then u is ¢-axial and a
subclass of O,. In symbols,

F..(\-w)Hp¢.o:ue3 nconc, .dim, =8 .5.ueax,necls’O,

Proof.-—If v is contained in u and possesses two members, then (cf. *¥3:31-32) » is
$-axial, and (¢f. ¥12-23) is not $-equivalent to w. Hence (¢f. ¥5:231) u is ¢-prime,
and hence (cf. *3:22) is ¢-axial, and also (¢f. *11-21) is a subclass of O,

*12°53. Proposition.—Assuming (A-aw)Hp ¢, if 2, y, and 2 are three distinet
entities forming a ¢-axial class, then the common subclass of em, (v'@ U ‘y) and
em, (v U 1‘z) is the unit class '@, In symbols,

Foo(ZN=m)Hpd.o:vzuyuizednax,.o.om (‘a uéy)nem (e iz) = e

Proof.— Cf. *¥4-21-27 and *10°2 and *12-28-42.

*18. On ¢-Maxvmal Classes and Self-¢-Concurrences.

*13'11. Proposition.—Assuming (A\—m) Hp ¢, if p is a ¢-maximal class and a
subclass of O,, and ¢ is a subclass of p, not the null class, then ¢ is a ¢-maximal
class. In symbols,

Foo(A\-m)Hpd.o:pemx,nels‘O, . gecls'p . lp .o . gemx,

Proof—The class ¢ must (¢f> *10°3 and *12:21) be of one, or two, or three
¢-dimensions. If the ¢-dimension number of ¢ is one or two, then (¢f. ¥102 and
*12°11°51) ¢ is a ¢-maximal class. If the ¢-dimension number of ¢ is three, then
(¢f *12:23) q is ¢-equivalent to p. Hence if v be a subclass of ¢, which is ¢-prime
and ¢-equivalent to ¢, it is ¢-equivalent to p, and hence (¢f. *3:23) it is ¢p-axial.
Hence (¢f. *¥3:23 and *1237) ¢ is ¢-maximal.

#1831, Proposition.—Assuming (A—) Hp ¢, if u is a self-¢p-concurrence and a
subclass of O,, then u is a ¢-maximal class. In symbols,

Foo(A\-7)Hpeé .o:uecone, nelsOy . 5. wemx,

Proof.—There exists (¢f. *12:37) a subclass (v) of w, which is ¢-prime and
$-equivalent to w. If v is a unit class, then (¢f. *10-2 and *12°11) v and u are
identical, and u is of one ¢-dimension and ¢-maximal. If v is a couple, then
(cfr *8:31'32) v is ¢-axial, and (cf. *3:22'23) w is of two ¢-dimensions and is
¢-maximal. If v is composed of three members, then u is of three ¢-dimensions, and
neither of the previous cases can hold. Hence again % is ¢-maximal.
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*13:32. Proposition.—Assuming (A—m) Hp ¢, all subclasses of O, which are
¢-maximal are self-¢p-concurrent, and conversely. In symbols, '

F:(A\=7)Hp¢ .. mx, neclsO, = cong, n cls‘O,
Proof.—Cf. *13:1131.

*14. On Points.

*14-11. Assuming (A —p) Hp ¢, every ¢-point is a self-¢-concurrence and a subclass
of O, In symbols,
F:(A\~p)Hp¢.o.pnt, cconc, necls O,

Proof.—Every ¢-point (¢cf. *11°21) is a subclass of O, Again let « and y be two
distinct members of a ¢-point P. Then (¢f *3'42) o, b, ¢ exist such that
vaurbude is ¢-axial and of three dimensions, and = and y are each ¢-concurrent
with each of a, b, and c¢. Hence (¢f. ¥12°53) at least one pair of @, b, and ¢ exist
(say @ and b) such that 2 u e uband vy U e u b are both three ¢-dimensional and
self-¢-concurrences. Hence (¢f. *12°52) 'z u o U *b and vz U ‘@ U b are both ¢-axial.
Hence (¢cf: *¥10°5 and *13:32) @ u vy is $p-axial. Hence P is a self-¢-concurrence.

*14°12. Proposition.—Assuming (A—p) Hp ¢, every ¢-point is ¢-maximal. In
symbols,

F:(A—p)Hp¢ .>. pnt, cmx,

Proof.—Cf. *¥18:32 and *14°11.

*14°18. Proposition.—Assuming (A—p)Hp ¢, if P is a ¢-point, then P is the
¢-concurrence of O, with P. In symbols, ‘

Foo(A~p)Hpep.o:Pepnt,.>. P =0,P

Proof-—Cf. *¥3°42 and *8-21-22 and *14-11.
*14-14. Proposition.—Assuming (\—7) Hp ¢, it P is a ¢-point, it possesses at least
three members. In symbols,

Foo(A\~7)Hpo.o:Pepnt, .o. Nc‘P=3

Proof.—P possesses (cf. *3'42) every member of O, which is ¢-concurrent with
each of a certain ¢-axial set of three members. Hence (¢f. *12:42) P possesses this
set of three members.

*14-21. Proposition.—Assuming (A — p) Hp ¢, ¢p-points with more than one member
in common are identical. In symbols,

Foo(A-p)Hpd .o: P, Qepnt, . Ne‘(PnQ)>1.2.P=Q

Proof.—Let a and b be two distinct members of PnQ. Then (¢f. *3'42 and
%1252 and *14'11) ¢ and d exist, such that ¢ is a member of P and d of Q, and
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vaubude and daubud are both of them three ¢-dimensional and ¢-axial.
Hence (cf. *10°5 and *1332) d is a member of O,(c‘au b u ‘c), and hence (cf. *342
and *14°11°18) d is a member of P. Thus P and Q are identical.

*16. On ¢-Planes.

*16°11. Proposition.—Assuming (A—7)Hp ¢, every ¢-plane is ¢-maximal, self-¢-
concurrent, and a subclass of O,.  In symbols,

r:(A\=m)Hp¢ .>.ple, c mx, nconc, ncls‘O,

Proof—Cf. *¥12-21-23"51.
*16-21. Proposition.—Assuming (\— ) Hp ¢, ¢-planes with more than one member
in common are identical. In symbols,

Foo(A=m)Hpd .o:p, qeple, . Ne‘(png)>1.50.p=q

Proof.—Cf. *¥12-23 and *16°11.
#1631, Proposition.—Assuming (A—m) Hp ¢, every self-¢p-concurrence is either
¢-copunctual or ¢-coplanar. In symbols,

F.o.(\=m)Hpé.o:ueconc,.>.copnt,lu.V. cople,lu

Proof.—A proof is only required when u is of three ¢-dimensions. Then a, ), ¢
exist, such that they are three distinct members of u and are not a ¢-coplanar class.
Hence (cf. *12'52) they form a ¢-axial class of three members. Hence (¢f. *3°42)
 is, in this case, ¢-copunctual.

*16°32. Proposition.—Assuming (A\—p)Hp ¢, if p is a ¢-plane, and P and Q are
distinet ¢-points, and p and P have common members, and also p and Q, then the
member (if any) common to P and Q is a member of p. In symbols,

Fo(A-p)Hpd.o:peple, . P,Qepnt, . P = Q. ql(pnP).q!(pnQ).5.PnQcp

Proof.—If P nQ is the null class, then PnQ is contained in p. If PnQ is not
null, let ¢ be a member ; also let @ and b be, respectively, members of pnP and of
p nQ, which exist by hypothesis. (i) If ¢ is identical with @ or b, then (¢f. *14-21)
P nQ is contained in p. Again (ii) if ¢ is not identical with @ or b, then (¢f. *14-11
and *16°11) @, b and ¢ form a self-¢-concurrence. Hence (¢f. ¥16°31) this class is either
¢-copunctual or ¢-coplanar. If the class is ¢-copunctual, then (¢f. ¥14-21) P and Q
are identical. Hence it is ¢-coplanar, and hence (¢f. *16-21) ¢ is a member of p.

*16'33. Proposition.—Assuming (A—p)Hp ¢, if P is a ¢-point and p and ¢ are
distinct ¢-planes, and P and p have common members, and so, also, have P and g,
then the member (if any) common to p and q is a member of P. In symbols,

Foo(N=p)Hp¢ .o: Pepnt, . p,qeple,.p = q. 4! (Pop).q!(Png).o.pngcP
Proof.—The proof is in all respects similar to that of *16-32.
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*16:42. Proposition.—Assuming (A—p)Hp ¢, if p is a ¢-plane and is not ¢-co-
punctual, then p is the ¢-concurrence of O, with p. In symbols,

Foo(A\=p)Hpe .>:peple, . - copnty!p.o.p=0,p
Proof-—From *8-21 and *16°11 we have ‘

pcOsp . . . . L oL

Let « be any member of the ¢-concurrence of O, with p. Hence (¢f *16°11)
pue is a self-¢p-concurrence. Hence (¢f. 16'31) pux is either ¢-copunctual or
¢-coplanar. But on the first alternative p is ¢-copunctual. Hence p u vx is ¢p-coplanar.
Hence « is a member of p. Hence from (1) the proposition follows.

Note.—In Concept V. the hypothesis of *16:42, that a ¢-plane is not copunctual, is
verified (¢f. *¥28°11), where ¢ represents “ homaloty,” and the axioms of that concept
are assumed. '

Summary of the Complete Development of this Subject.—By the use of further
axioms the whole theory of projective geometry, apart from “order” and apart from
Fano’'s axiomt respecting the distinction of harmonic conjugates, can be proved for
¢-points and the associated geometrical entities. Then FAX0'S axiom can be added,
and the theory of order and continuity can be introduced, as in PIERT'S memoir
(loc. cit.). 1In the sequel a somewhat different line of development is adopted, suitable
for the special ideas of Concept V.

(it) Conceer V.

This concept is linear and monistic. It makes use both of the theory of interpoints
and of the theory of dimensions. The points are classes of objective reals, and
disintegrate from instant to instant. The corpuscles are capable of various and
complicated structures, and are thus well fitted to bear the weight of modern
physical ideas. The concept is Leibnizian, and only requires one extraneous relation
for the same purposes as that of Concept I1I.

The essential relation is the pentadic relation Ri(abedf), as explained at the
commencement of Part IIl. The four first terms, namely, a, b, ¢, d, are objective
reals and are mutually distinet, the fifth term is an instant of time.

The relation Ri(abedt) can be read, a intersects b, ¢, d in the order bed at the
wnstant t. In this concept copunctual objective reals do mot necessarily intersect,
though two intersecting objective reals are necessarily copunctual. The relation of
ntersection is not to be limited in properties by the mere geometrical suggestion of its
technical name, ‘

Since points are defined by the aid of the theory of dimensions, it follows (cf. note

t Cf. PiERi, loc. cit.
VOL. CCV.—A. 3T
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to *¥3:42) that the geometry cannot be of less than three dimensions. Hence in this
concept geometry of three dimensions occupies a position of unique simplicity.

The points at infinity, here called cogredient points, are points in exactly the same
sense as the other points. They are defined by a property not hitherto taken as
fundamental. The properties of cogredient points play an essential part in the
construction of a relation which assigns an order to the points on any straight line.

*20. Definitions.

*20°11. Definition.—An objective real p is doubly secant with a class v at an
instant ¢ if there exist two objective reals, members of u (x and y, say), which are
both intersected by p at the instant ¢, and are such that there exists no interpoint on
p of which « and y are both members. The symbol (%) !p will denote that p is
doubly secant with  at the instant . The symbolic definition is

(W)relp . = : (g, y) . x #y .2, yeun Ri(p;;;t) . = (qv) . v e R(p??%t) ., yew DF

*20°12. Definition.—A class u is homalous at an instant ¢, either when a necessary
and sufficient condition, that « should be a member of w, is that x should be doubly
secant with %, o when « is a unit class contained in Ré(;;;;¢). The symbol pg,!u
will denote that w has the property of homaloty at the instant ¢. The symbolic
definition is

prel . = xeu . =, . (Th)gte: V iuel nesRi(5;550) Df

This property (pr) of homaloty will now be taken as the special value of ¢, to
which the theory of dimensions will be applied. The common pp-subregion for u is
denoted, according to the definition of *¥3-12, by em, ‘. But a suffix to a suffix will
be avoided by using the simpler symbol cmg, %, and similarly for the other entities
defined in *3. Thus the following symbols are also defined, namely,

Ogy, equlVg,‘ %, Pring, dimg,, axp, mXg, @ v, concg, Plem,

pnty, COpleRt lu, copnty,!u.

With regard to the nomenclature, the term * ¢-equivalence” should be
particularized into * homaloty-equivalence,” and “ ¢-prime” into “ homaloty-prime,”
and so on. But, except where confusion is likely to occur, the term  homaloty ” will
be dropped; and the terms * equivalence,”  prime,” ¢ dimensions,” * axial,”
“ maximal,” “ concurrence of u with o,” ¢ self-concurrence,” ‘ plane,” ¢ point,”
“ coplanar,” ¢ copunctual” will be used in the senses defined in *3, with ¢ particu-
larized into homality.

Elucidatory Note.—This definition of homaloty should be compared with the
definition of the flatness of a class of punctual lines which has been used in the
elucidatory notes of *3. Thus a class of punctual lines is flat, either when it is a
unit class whose single member is a straight line, or when it is a necessary and
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sufficient condition of a straight line x being a member of it, that « should meet two
members of the class in points which are not their point of meeting (if they have a
point of meeting). Owing to the fact that *intersection” (as used here) is wider in
intension and narrower in extension than the idea of the ““ meeting” of two punctual
lines, two punctual lines may “ meet” without the corresponding objective reals
“ intersecting.” The result is that homaloty and flatness have some different
properties, for example, cf. *21-21.

*20°21. Definstrion.—The punctual associate of a class u is the class of those points
which have a member in common with . The punctual associate of u is denoted by
assp 4. The definition in symbols is

asspu = P{P epnty, . 5 !(P nw)} Df

Note.—The punctual associate of the class «‘a, where a s an objective real, will be
called the punctual associate of . Its symbol is assg,‘i‘ a.

*20°22. Definition.—A. punctual line is a class of points such that there exist two
planes, p and ¢, which are distinct and are such that the class of points is the common
subclass of the punctual associates of p and ¢. The class of punctual lines at any
instant ¢ is denoted by ling,. The symbolic definition is

ling, = m{(qpP, 9) - P, gepler, . p # g . m = assy'P n assg,'q} Df

Note.—Those punctual lines which are not ““lines at infinity” (to be explained
later) will be proved as the result of the axioms to be the punctual associates of the
various objective reals.

*20-28. Definition.—The point, if there 1s one and one only, which contains a class
u is called the dominant point of u. The dominant point of u is denoted by g, The

symbolic definition is
ug, = (1p) { p e pnty, . uecls‘p} Df

Note—The idea of a dominant point obtains its importance from the fact that,
according to the axioms glven below, each interpoint is contained in one and only one
point.

*20-231. Definition.—The nonsecant part of u is that subclass of w of which no
member is a member of any interpoint which is a subclass of . The nonsecant part
of u is denoted by nscg‘w. The symbolic definition is '

nscp % = &{xeu . — (Fv) . veintpnty, n cls‘u . xev} Df

Note—This definition takes its importance from the fact that (assuming the
subsequent axioms) a point in general consists of a nonsecant part and of a part
made up of interpoints contained in it. Either the interpoints or the nonsecant
part may be wholly absent.

*20282. Definition.—A. class of points is called a Figure.

3 T2
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*20-233. Definition.—A point, which is a member of a figure, will be said to lie in
that figure.

*20°234. Definition.—A point, which lies in the punctual associate of a class of
objective reals, will be said to be on, or upon, that class.

*20°285. Definition.—A punctual line is said to join two points if both the points
lie in it.

*20°236. Definition.—Two punctual lines, which possess a common point, will be
said to meet at that point. Similarly, any two classes of points will be said to meet in
their common subclass, and this subclass will be called their meeting.

*¥20°24. Definition.—A class of points is called collinear if there exist a punctual
line in which they all lie. The symbol collg,!% will denote that u is a class of collinear
points at the instant #. The symbolic definition is

collg,'w . = . (3ym) . meling, . wecls‘m Df

*20°81. Definition.—Two figures are wn perspective if (i) they have a one-one
correspondence to each other, (ii) the joint figure formed by the two figures combined
is not collinear, and (iii) there exists a point (the centre of perspective) which lies in
every punctual line joining two distinct corresponding points. The statement that
w and v are in perspective with each other at the instant ¢, and that S is the requisite
one-one correspondence, will be denoted by w (S persp)g, v. The symbolic definition is

u (S persp)g, v . =: u, veclspnty, . « collg!(uuv). Sel —1.u=8(;). v=8(;):
(gV):meling, . S(AA) A=A A Aem.>, s n. Vem Df

¥20°32. Definition.—The symbol [AB]perspy,[A’B’] denotes that A, B, A’, B are
points, and that the figure formed by A and B is in perspective with the figure
formed by A’ and B’, and that the one-one correspondence of the perspective is of
A to A’ and of B to B. Also [ABC] perspy,[A’B'C’] has a similar meaning, and so
on. In symbols,

[AB] perspy, [A/B]. = . (5fS) . (A u vB) (S persp)p, (A’ v vB'). S:(AA’). S(BB) Df
[ABC] perspg; [A'B'C']. = . (gS) . (A v ¢Bu Q) (S persp)r (A’ u B u ).

Si(AA). 8(BB) .S (CC) Df

#20°83. Definition.—The symbol u perspg,v denotes that there exists a one-one

relation S such that, at the instant ¢, u is in perspective with » and S is the requisite
one-one correspondence. In symbols,

w perspg, v . = . (F[S) . u (S persp)g, v Df

*20°41. Definition.—Two objective reals, @ and ¢, are called cogredient at an
instant ¢ when (1) if », », w are three interpoints on @, and «/, ¢/, w’ are three
interpoints on ¢, and the dominant points wuy, vp, Wwr ave a trio of points in
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perspective with the trio of dominant points %'y, v'g;, 'y, then the interpoint relation
(Ry,), if 1t arranges either trio of interpoints in an interpoint order, arranges both
trios of interpoints in the same interpoint order (t.e., either wvw and w'v'w/, or vwu
and YW/, or so on), and (2) there exist three interpoints u, v, w on « in the
interpoint order wvw, and three interpoints %/, v/, ' on ¢ such that wug, vy, wg, are in
perspective with 'y, vy, W'y, The symbol cogrdy,‘e denotes the class of objective

reals cogredient with «. The symbolic definition is

cogrdp‘a = & {(u, v, w, v/, V', w') : u, v, we Ri(a???). o/, v/, w e Ri(x??%t) .
[UrVrWr; ] PETSPR: [WrV7iWre] - 2 - R’ (wvwt) = Ry (w/'v'w't) :
(i, v, w, o/, ¥, W) . u, v, weR(a??2) . o/, v/, w e Ri(x???1).

R (wvwt) . [ugVrWr;]| perspre [ %'zt siw'ss |} Df

Note.—The class cogrdy,‘a does not include « itself (¢f *27°43). It will be noticed
that universal preservation of order by ranges in perspective on a pair of lines is a
characteristic of a pair of parallel lines in Euclidean space, and of nonsecant lines in
hyperbolic space. The choice of this property for the definition of parallelism (or
nonsecancy) arises from the facts that (1) any two coplanar objective reals are
copunctual (according to the subsequent axioms), so that the property of nonsecancy
(in its ordinary acceptation) is not available, (2) we do not wish to make *cogredience”
synonymous with “nonintersection” (using *intersection” in the special sense here
defined), as this would impose an unnecessary limitation on the concept. The idea of
cogredience is an essential element in the definition of a relation which, with the aid
of axioms, distributes the points in any punctual line into an order.

¥20°42. Definition.—A Cogredient Point is the class of objective reals cogredient
with some objective real o, together with « itself. The symbol ooy, denotes the class
of cogredient points at the instant . The definition in symbols is

oy, = U {(g@) . @ € Og; . = 1‘a U cogrdyg,‘a} Df

Note.—In the case of Euclidean geometry, which is the only case considered here,
each cogredient point is a point according to the definition of *3-42. The present
definition would be very inconvenient, unless this were the case. The symbol ooy, is
reminiscent of the fact that the cogredient points are the points at infinity.

*20°51. Definition.—The Point-Ordering Relation is a tetradic relation holding
between three points and an instant of time. Its symbol is R,,, and R, (ABCt) is
defined to mean that, at the instant ¢, (1) A, B, C are non-cogredient points upon the
same objective real, @ say, and (2) there exist an objective real x and three
interpoints u, v, w on @ such that (i) « is cogredient with a, and (ii) %, v, w are in the
interpoint order www, and (iii) A, B, C are in perspective with the dominant points
Upis Vriy Wri Lhe definition in symbols is
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R,(ABCY). =. A, B, Cepntyg, = oo, . (&, @, u, v, w) . e AnBnC.xecogrdga.
u, v, weRi(x???t) . Ry (wowt) . [ABC] perspy; [ugrravr,| Df

Note.—Since (cf: *27°43) @ in the above definition is distinct from @, three collinear
(t.e., on a) points, A, B, C, cannot directly take their point-order from three inter-
points which they themselves may severally contain (¢f. however *21-51). The
point-order of A, B, and C must arise from the order communicated (in a sense) to a
copunctual pencil of three punctual lines by three interpoints contained respectively
in points in these lines, and all three interpoints possessing an objective real () in
common. The punctual lines of this pencil must possess A, B, and C respectively.
This intervention of a pencil for the communication of point-order is necessary for
the comparison of the orders of different ranges. If the apparently simpler plan is
adopted, inextricable difficulties seem to arise. Also it will be remembered that not
every point will necessarily contain an interpoint.

*20°61. Definition.—A Punctual Plane is a figure which is either the punctual
associate of some plane, or is the class g, The class of punctual planes is denoted
by ppler. The definition in symbols is

ppleg; = assg,“pleg; U v oop, Df

Note.—This definition is only convenient for Euclidean geometry.

*20°72. Definitron.—A figure is called Punctually Coplanar if there is a punctual
plane containing it. The symbol coppley,!u will denote that w is a punctually coplanar
figure at the instant ¢. In symbols,

coppleg,!u . = . (A p) . peppler . veclsp Df
Note.—This definition should be compared with that of copleg,!u in *¥3-43.

*91. General Deductions.

*21+01. Proposition.—All the general deductions in the theory of dimensions,
namely, *4 to *8, hold.

The following propositions, dependent on the special definition of homaloty, also
hold :— '

*21°11. Proposition.—Opy, is the class Ri(;;;;¢). In symbols,

. O = R(5550)
Proof.—Cf. ¥20°12.
Note.—1If ¢ is not an instant of time, the classes Oy, and Ri(;;;;¢) are both the null
class, and are thus identical. Accordingly the hypothesis, teT, is not required in

this proposition. A similar explanation of the absence of the hypothesis, ¢ ¢ T, holds
for many other propositions.
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*21-21. Proposition.—An objective real, which is doubly secant with the common
subregion for u, is a member of the common subregion for . In symbols,

[:w=cmg‘u. (0w)g!x.>. recmyu
R

Proof--—Cf. ¥3:12 and *20°11.

Note.—The converse is not in general true, namely, that, if « is a class of objective
reals, and = is a member of cmpy,‘w, then « is doubly secant with emg,‘u. Nor does
this converse follow from subsequent axioms. In the absence of this converse
proposition the properties of homaloty differ from those of * flatness” for classes of
punctual lines. For if v is a class of punctual lines, and ¢ stands for the property of
flatness, then emy‘u is flat.

*21'31. Proposition.—The proposition u Hp ¢ is true when pg, is substituted for ¢.
In symbols,

[ pHp p.

Proof.—CYf. ¥10°2 and *20-12.

*21°41. Proposition.—If a is an objective real cogredient with ¢, then ¢ is
cogredient with @. In symbols,

[': aecogrdga . =. cecogrdg‘a

Proof-—Cf. #20-41.

*21-51. Proposition.—If w, v, w be three interpoints, possessing the same objective
real, and with dominant points ug, vg, wg, then Ry (ugwgivgt) implies R, (uvwt).
In symbols,

Foou, v, weRi(a???t) . o Ry (unrwrd) . o . Ry (uvwt)

Proof.—By definition (cf. ¥20°51) R,/ (ugwgwyt) implies (1) the existence of an
objective real x, cogredient with @, and also of three interpoints, u/, o/, w/, all
possessing «, and (2) that R, (w'v'w't), and (3) that «/, v/, w' are contained in
dominant points 'y, v'g, W'p, in perspective with wg, v, wg. Hence by the
definition of cogredience (¢f. ¥20°41) also R, (uvwt) holds.

*22. The Awioms.—Just as in Concept III., the axiom of persistence (cf. *221)
does not enter into the geometrical reasoning, but it is essential to the physical side
of the concept.

*¥22'1. ITHpR is the statement that, if ¢ be an nstant of time, O is contosned in

Og. In symbols,
IHZ)R.:::tGT.Dt.OCORt Df

The next four axioms, viz. (II.-V.)Hp R, are the axioms of order. They have
already been explained in *1-51°52°53:54.

*#22:21. IIHpR =aHpR Df
*2222. IITHpR =BHpR Df
*#22:23. IVHpR = yHpR Df
*22-24. VHpR =8HpR Df
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The next three axioms, viz. (VL-VIIL)Hp R, are the axioms establishing the
relation of interpoints to points. Intpnt Hp R has been defined in *1-41.

*¥2231. VIHpR = intpnt Hp R Df

*22-32. VILHpR is the statement that, of u is an interpoint, there exists a point
contarning w. In symbols,

VIIHpR . =: (¢, ) : weintpntg, .o . (I p) . pepnty, . ucp Df

*22:33. VIIIHp R is the statement that, if p be a point, and u and v be two
distinct interpoints contained in p, then w and v possess no common member. In
symbols,

VIIIHp R . =: (p,u,v,t) : pepnty, . u,veintpntg, nelsp. u#v.o. unv=A Df

The next set of three axioms, viz. (IX.-X1.) Hp R, supplies the missing hypotheses
requisite to make homaloty a * geometrical property,” as defined in *10.
*22°41. IXHp R is the statement that, if ¢ is an instant of teme, v Hp pg, vs true.

In symbols,
IXHpR.=:¢teT .o .vHp pg Df (¢f. *10°3)

*22:42. XHp R is the statement that, if ¢ is an instant of time, w Hp pg, 15 true.

In symbols,
XHpR.=:teT .o . 7w Hp pg Df (¢f. *10°4)

*22:43. XI Hp R is the statement that, ¢f ¢ us an instant of time, p Hp pg, 1s true.
P pHpp

In symbols,
XIHpR.=:teT .o, . pHppg Df (¢f. *10°5)

*22:51. XILHp R is the statement that, if p and q are distinct planes, and there
exists a pownt, not a cogredient point, which is a member of the punctual associates of
both planes, then p and q possess a common member. In symbols,

XITHpR . =:p, qepleg, . p # q. i ! {(assg,‘p N assgq) = oops} . 2, 00 - A (png) Df

The next axiom, XIII Hp R, is the “ Euclidean” axiom.
*¥22:61. XIII Hp R is the statement that the cogredient pomts are pounts. In

symbols,
XIII Hp R . =. th C pnth Df

The next three axioms, namely (XIV.-XVL)Hp R, establish the theory of the
order of points as determined by the point-ordering relation (¢f. *20°51). Incidentally
some existence theorems can be deduced from them, which would else have to be

provided for elsewhere.
*#22:71. XIVHpR is the statement that, ¢f A and B are two distinct non-
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cogredient points, then there exists at least one pownt C such that A, B, C are in the
pownt-order ABC at the instant considered. In symbols,

XIVHpR . =:(A, B, ¢): A, Bepnty,= oo, . . ! R, (AB;¢) Df

*22:72. XV Hp R is the statement that, if A, B, C are three distinct non-cogredient
points, on the same objective real, then at the instant considered one of t  point-

orders ABC, or BCA, or CAB holds. In symbols,

XVHPR =0 (A., B, O, t).‘. A, B, Ofpnth- Rt » HI(Aan C) .
A B.B 0.0 A.5:R(ABCY).V. R, /(BCAY). V. R, (CABy) Df

pn

The next axiom, XVI Hp R, is the well-known “ transversal ” axiom.

*2273. XVIHpR is the statement that, if at the instant t the points B, C, D are
wn the point-order BCD, and the points C, E, A are in the pownt-order CEA, and the
ponts A, B, C are not collinear, and F lies in the punctual associates both of AnB
and of D n E, then the points A, F, B are in the point-order AFB. In symbols,

XVIHpR.=:(A, B,C, D, E F, ¢t): R,/ (BCDY) . R,,/(CEA?) .
AnBnC=A.Feassg(AnB)nassy (DnE).o. R,/ (AFB:) Df

*2274. As XVII Hp R, an axiom of continuity will be wanted.

Note.—The above axioms are all axioms of geometry, in the sense of * geometry”
as defined in the sense definition of it given in Part I. (i.). But geometry in this
Concept V. includes more than does geometry in Concept I. For in Concept I
geometry has only to do with points, punctual lines, and punctual planes; but in
Concept V. geometry has, in addition, to consider the relation of the objective reals
(which are all “linear”) and of interpoints to the above entities. In this respect,
geometry in Concept V. merges into physics more than does geometry in Concept I.
Thus the excess of the number of axioms in Concept V. over the number in
Concept I. arises from the fact that there is a larger field to be covered. Also,
I Hp R is not required in the geometrical reasoning.

*25. Prelvminary Propositions.

*25°11. Proposition.—Assuming (I1.-VI) Hp R, all the propositions of the theory
of interpoints (¢f. *1) hold of the interpoints of this Concept.

*25°12. Proposition.—Assuming (IL-VL.)Hp R, if ¢ be an instant of time, then
Og, possesses at least four members. In symbols,

I-... IXH])R .3:'tET D ‘NC‘ORt§4

Proof.—Cf. ¥1:61-71'72°73 and *21°11 and *25°11,
VOL. CCV.—A. 3 U
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#2513, Proposition.—Assuming (IL-VL)HpR, if ¢ be an instant of time, then
Op; 1s homalous. In symbols, '

l_.'. (II.“‘VI.)HPR e I tET .o I“'Rt!ORt

Proof—From *1+65 and *21°11, Oy, is identical with R:(;---¢). Hence (cf.
¥1:31'61'62) every member of Og, is doubly secant with Og. Again (c¢f. *21°11),
every objective real which is doubly secant with Og, is a member of it.

*25°14. Proposition.—Assuming (IL-VIL, IX-XL) Hp R, if ¢ be an instant of time,
then all the special deductions of the theory of dimensions, namely *11 to *16, hold
respecting homaloty, that is, with py, substituted for ¢.

Proof—Cf. *¥21-31 and *22°41'42°43 and *25°13.

*25:21. Proposition.—Assuming T Hp R, if ¢ is an instant of time, then O = O,
In symbols,

. IH]OR o:teT .o.0 =0y

Proof.—Cf. ¥21°11 and *22-1.

Note.—The above theorem is not used in any geometrical reasoning.

*25'81. Proposition.—Assuming (IL-VIIL) Hp R, if o be a member of Oy, then
the number of points on « is at least three. In symbols,

oo (IL-VIIL)HpR .5 : @ €Oy, . o . Nc‘assp‘v'a = 3

Proof.—Cf. *1°72 and *21°11 and *22°:32'33 and *25°1.
*25:32. Proposition.—Assuming (IL-VIL, IX.-XL)HpR, if u be an interpoint,
there is one and only one point containing it. In symbols,

P (IL-VIL, IX.-XI.) Hp R . o : weintpnty, .o . P {Pepnty, . ucP}el
Proof—Cf. *1-71 and *14:21 and *¥22-32.
- *26. On Cogredient Pownts.
*26°11. Proposition.—Assuming (IL-VL, IX-XI., XIIL) Hp R, ifa point possesses

two members which are cogredient to each other, it is a cogredient point. In
symbols,
F.oo(IL-VIL, IX.- XL, XIIL) Hp R . 5 :
AEpnth . a/, bEA. . bfcogl‘dm‘a . # b ] . A.Gth
Proof.—Cf. *¥14-21 and *20°42 and *22-61. .
*26:22. Proposition.—Assuming (IT.-VI, IX.-XL, XIIL) Hp R, if A is a cogredient
point and @ is a member of A, then A is identical with ‘@ u cogrdy‘a. In symbols,

F.. (IL-VL, IX.-XL, XTIL)HpR". :Aeoog.aeA.5. A=1aucogrdp‘a

Proof—Cf. ¥14°21 and *20°42 and *21-41 and *22°61. -
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*26°23. Proposition.—Assuming (IL-VI, IX -XI., XIIIL.) Hp R, there is one and
only one cogredient point lying in the punctual associate of an objective real. In
symbols, ’

F. (IL-VL, IX-XL, XTIL)Hp R .5 : ¢ Oy, . 5 . cop  asspfi'are 1
Proof-— Cf. *26-22.
*¥26°24. Proposition.—Assuming (IL-XL, XIIL)HpR, there are at least two

points, not cogredient points, lying in the punctual associate of an objective real. In
symbols, ‘

Foo(IL-XL, XIIL)Hp R . 5: @ €Oy, . o. Ne‘{assp, t'am oo, } = 2
Proof.—Cf. #2531 and *26-23.
*97. On Punctual Lanes.

*27°11. Propositton.—Assuming (IL-VL, IX.-XL)HpR, if p and ¢ are distinct
planes, and png¢q possesses a member, then assy‘p nassy‘q is identical with
assg(p nq). In symbols,

.. (IL-VL, IX-XL)HpR . >:
P, qepler, . p # g . TP N Q). o. assp'p nassg'q = assp, (pnq)
Proof.—Cf. *¥16°33 and *20-21. ' A
*27°12. Proposition.—Assuming (IL-VL, IX.-XIL)Hp R, if p and ¢ are distinct

planes, and a point, not a cogredient point, lies in the punctual associates both of p
and also of ¢, then p n ¢ possesses one and only one member. In symbols,

.. (IL-VL, IX.-XIL)HpR . >:
P, qepleg, . p # q . ! {(assy,‘p nassp Q)= oop}.>.pnqel
Proof.—Cf. *16-21 and *22°51.
*27°18. Proposition.—Assuming (IL-XIIL)HpR, if p and ¢ are distinet planes,

then if p nq possesses one member, there are non-cogredient points lying in the
punctual associates both of p and of ¢; and also conversely. In symbols,

Fi: (IL-XIIL)HpR .5 .. p, qeplog.p # q.5: |
n!{(assgp N asspq)m g} . =.pnqel

Proof-—Cf. ¥26:24 and *27-12.

#2721, Proposition.—Assuming (IL-VL, IX-XIL)HpR, if m is a punctual line
possessing a non-cogredient point, then there exists an objective real such that m is
its punctual associate. In symbols, ‘

[.. (IL-VL, IX-XIL)HpR .>:
meling, . ! (mm= oog) . 0. (ga) . ¢ €Og, . m = assg,1‘ar
Proof—Cf. *27°11°12.
3 U2
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*27°22. Proposition.—Assuming (IL-XIIL) Hp R, a punctual line possesses either
more than one non-cogredient point or no such point. In symbols,

Foo (IL-XIIL)Hp R . 5 : meling, . ! {m=oop,} .o . Nc*(mm cog) > 1

Proof.—Cf. *¥20-22 and *26:24 and *27-21.

*27-23. Proposition.—Assuming (IL-VI, IX.-XIIL)HpR, a punctual line,
possessing a non-cogredient point, possesses one and only one cogredient point. In
symbols,

[ (IL-VL, IX.-XIIL)Hp R . 5 : meling, . 5! (m= cog) . 5. m n copel

Proof.—Cf. *26-23 and *27-21.

*27'31. Proposition.—Assuming (IL-VL, IX.-XIL)Hp R, if m is a punctual line
possessing a non-cogredient point, and A and B are two distinct points lying in it,
then m is the punctual associate of A n B. In symbols,

F.(II-VL, IX-XIL)HpR .o :
meling, . [ !(m=oog,). A, Bem . A # B.>.meassy (A nB)

Proof—Cf. ¥14-21 and *27-1112.
*27°41. Proposition.—Assuming (IL-XL)HpR, if @ is any objective real, then
there exist two planes p and ¢ such that « is the sole member of p nq. In symbols,

Foo(IL-XL)HpR .5: ¢ €O .o. (P> Q) - P, gepler:. png = 'a

Proof-—Cf. ¥12:21 and *14'12°14 and *22°41 and *25°31.

*27°42. Proposition.—Assuming (IL-XIIL)HpR, if @ be an objective real, then
assg‘t‘a is a punctual line with a non-cogredient point, and conversely, if m is a
punctual line with a non-cogredient point, there exists an objective real a such that
m = assg,‘t‘a.  In symbols,

Fo o (IL-XTIL)Hp R .o : meling, . i!(m= oog,) . =. () . @ € O, . m = assg‘t‘ar

Proof —Cf. *27°11°13:21°41.

Note.—This proposition, *27-42, establishes the connection between the objective
reals and the punctual lines.

*27-43. Proposition.—Assuming (IL-XIIL)HpR, if @ and ¢ are cogredlent they
are distinet. In symbols,

Fo.(IL-XIIL)Hp R .5 : cecogrdg‘a .. a # ¢

Proof—Cf. ¥20-31'41 and *27-42.
*27°51. Proposition.—Assuming (IL-XIV.)Hp R, if A is any non-cogredient point
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and B is any other point, then A n B possesses one and only one member. In
symbols,

l-... (II._XIV.)HPR ] :'Aepnth- Rt . Bepnth .‘.A. # B‘.D. A.nBE].

Proof—(i) If ‘B is non-cogredient, ¢f. *14'21 and *20°51 and *22°71. (i) If B is
cogredient, then (cf. *14°14) let b be a member of B. Then (cf. *26°24) there is on b
a non-cogredient point D. Hence by (i) A n D possesses a single objective real, d
say. Hence (cf. *¥14'12) b and d are coplanar and cmg,(:‘d U ¢‘d) is a plane whose
punctual associate possesses both A and B. Also, since a point is three-dimensional,
B possesses another objective real, ¢ say, not coplanar with b and d. Hence by
similar reasoning cmg, (v‘b U ‘c) is a plane, not identical with cmg, (v'd U ‘d), whose
punctual associate also possesses A and B. Hence (cf. *27°13) these two planes have
one objective real in common, and hence (¢f. *¥16°33) this objective real is a member
of A n B, and hence (c¢f. *¥14:21) A n B possesses one and only one member.

- *27°52. Proposition.—Assuming (IL-XIV.)Hp R, if A be a non-cogredient point
and B be any other point, then assy,'(A n B) is a punctual line with a non-cogredient
point, and conversely, if m be a punctual line with a non-cogredient point then there
exist two points A and B, such that A is not cogredlent and m is identical with
asSp, (A n'B). In symbols, '

F o (IL-XIV.))Hp R .5 : meling, . ! (m=cop,) . =
(FA, B) . Aepnty, = cop, . Bepnty, . A # B.m = assy, (A n B)

Proof.—Cf. *27:22:31°42°51.

%98, On Figures.

*28:01. Proposition.—Assuming (IL-VL, IX.-XL)HpR,. if ¢ be an instant of
time, there exists at least one punctual plane, not the plane cog. In symbols,

Fo.(IL-VL, IX-XL)HpR .5 : teT .o, q!(pples = ¢ oor)

Proof—Cf. *¥12-42 and *22°41.

*28°11. Proposition.—Assuming (IL-XIIL)Hp R, if p be any punctual plane, not
the plane ooy, it possesses at least three non-cogredient points, whlch are not
collinear. In symbols,

l ‘. (II.—XIII.) Hp R D :_p € pplem - L"th . Do )
(qu) . we(3nelsp). unoop, =A .« colly!u

Proof.—Cf. ¥14:21 and *26°24 and *27-21°31.
Note.—Cf. *16°42 and the note on it.
*28'12. Proposition.—Assuming (IL-XIIL) Hp R, if p be any punctual plane, not
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the plane ooy, there exists at least one non-cogredient point not lying in it. In
symbols,

F.. (IL-XIIL)Hp R . > : peppleg, =t oo . . (HA) . A e(pnty, = o) =p

Proof.-— Cf. ¥12:21 and *16°32 and *22-41 and *26-24 and *28-11.

*28'21. Proposition.—Assuming (IL-XIV.) Hp R, if « be any objective real and p
be any plane, then either the punctual associates of 2 and p have one and only one
common member, or x is a member of p. In symbols,

For(IL-XIV)HpR .o, €Oy, . pepleg, . o asspiv'@nassy'pel . V.xep

Proof.-—Take (cf. ¥26:24 and *¥28°11) two non-cogredient points A and B upon «, and
a non-cogredient point C in assy‘p but not on x. If either A or B lie in asspp,
then ¢f. *16:32. If neither A nor B lie in assy'p, then (¢f. *16:32 and *27°51)
emy, {(BnC)u (A nC)} is a plane possessing , and its punctual associate possesses C.
Hence (¢f. *22°51) there is a common member of p and this plane, y say, and « and y
are coplanar, hence (¢f. ¥10°4 and *16°11) the punctual associates of x and y possess a
common point. Hence assy‘‘x and assp‘p possess a point in common, and then
of. *16°32. '

*28:22. Proposition.—Assuming (IL-XIV.) Hp R, if p and ¢ are punctual planes,
and p is not identical with ooy, and pnq is contained in cop, then png and
p N oy, are identical. In symbols,

Foo(IL-XIV)HpR .o :p,geppleg . p # op . pngcog, .. png=pnowy,

Proof.—1If p and ¢ are identical, then pc ooy, but (¢f. *28'11) this is impossible.
Hence p # q. If ¢ = ooy, then png = pnooy. Assume g # oy Then (¢f. *¥20°61)
there exist planes, p’ and ¢ say, such that p is assy‘p’ and q = assg‘q’. Since
pNnqcoy, there is (cf. *26:24) no objective real common to p’ and ¢. Hence
(¢f. *2821) upon every objective real possessed by p’ there is one and only one point
lying in q. Hence (¢f. ¥2623) pngq = p n oo,

*28:31. Proposition.—Assuming (IL-XIV.) Hp R, in every punctual line there lie
at least three points. In symbols,

Foo (IL-XIV.)HpR .5 : meling .o . Ne‘m = 3

Proof.—1If m possesses non-cogredient points, then ¢f. *¥27-22:23. If m is contained
in oop, then (¢f *28:22) m is identical with p n ooy, where p is a punctual plane.
But (cf. *27'51'52 and *28°11) there are three distinct punctual lines contained in p,
meeting two by two in three non-cogredient points; then ¢f. *27-23.

%2832, Proposition.—Assuming (IL-XIV.) Hp R, a punctual line is the common
meeting of two punctual planes, and conversely. In symbols,

F.. AL-XIV.)HpR . o: ling = m {(gp,q) . p, gepple. . p# q. m =pngq}
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Proof—The direct proposition follows from *20-22:61. "For the converse, let p
and ¢ be a pair of punctual planes If neither p nor g be ooy, then ¢f. ¥20:22:61.
Consider now p n oy, where p is distinet from oop. Take (¢f. *28:12) a non-
cogredient point A, not in p.  Also (cf. proof of *28-31) there are two distinct points
B and C in pnooy. Hence (¢f *27'51) cmp{(A nB)u (A nC)} is a plane, and its
punctual associate, ¢ say, possesses A and B and is distinct from p. Hence
(¢f *27-23 and *28'22) pngq is identical with pn O But (¢f. *2822) pnqisa
punctual line, and hence p n oy, is a punctual line. ‘

*28-33. Proposition.—Assuming (IL-XIV.)Hp R, two distinet points lie in one
and only one punctual line. In symbols,

F..(IL-XIV.)HpR .5: A, Bepnty, . A # B.o. m{meling, . A, Bem}el

Proof—Firstly, only one punctual line (if any) possesses both A and B (¢f. *27-31
and *28-22:32). Secondly, to prove that a punctual line exists possessing both A
and B. If either point is non-cogredient, ¢f. *27-52. If both points are cogredient,
then (c¢f. *28'11°12) two non-cogredient points C and D exist such that the four
points A, B, C, D are not punctually coplanar. Hence (c¢f. *27°51) the meeting of
the punctual associates of emy{(A n C) u (B n C)} and of emy{(A nD)u (Bn D)} is
a punctual line possessing A and B.

*28°41. Proposition.—Assuming (IL-XIV.)Hp R, three points, which are not
collinear, lie in one and only one plane. In symbols,

f..(IL-XIV.)HpR .5: ue3 n pntg; . «collp!u.o. p{peppleg, . ucp}el

Proof.-—1If the three points are all cogredient, then (¢f. *2822:32) ooy, is the only
punctual plane which possesses them all. If the three points are A, B, C, and
A be non-cogredient, then (¢ff *27°51 and *28-'32) the punctual associate of
cmp, {(A n B) u (A nC)} is a punctual plane, possessing A, B, and C, and is the only
one.

*28:42. Proposttion.—Assuming (IL-XIV.) Hp R, three punctual planes, which do -
not meet in a punctual line, meet in one point. In symbols,

Foo(IL-XIV.)HpR .o:ue3 nels‘ppleg; .. n‘ueling u 1

Proof-—Let p, q, » be the three punctual planes. Assume that p and ¢ are
neither the punctual plane ooy. If ¢ n 7 is contained in oop, then ¢f ¥20°22:61 and
*27-23 and *28-22:32. If ¢ n 7 is not contained in oog, then ¢f. *27°12 and *28-21.

*30. Perspective.

A few propositions on perspective (¢f. ¥20'31'32°33) are required as a preliminary
to the discussion of the point-ordering relation (¢f. *20°51). ' : :
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*30°1. Proposition.—Assuming (IL-XIV.) Hp R, if two figures are in perspective,
their cardinal numbers are equal and each greater than one. In symbols,

F.. (IL-XIV.)HpR . > : wperspgv . o. Ne‘u = Ne‘v . Ne‘u > 1

Proof.—The equality of the cardinal numbers follows from the definition ; also if
both figures were unit classes, then (¢f. *28-33) they would be collinear. '

*30°3. Proposition.—Assuming (IL-XIV.)Hp R, if the figure » is in perspective
with the figure v, and also with the figure w, and if u, v, w are respectively collinear,
and the punctual lines respectively containing %, v, w possess a common meeting,
then either v is in perspective with w, or the joint class of v and w (z.e., v U w) is
collinear. In symbols,

F::(IL-XIV.)Hp R . o.". u perspg; v . u perspg, v . m, m/, m” eling, .

wem.vem .wem” . ql(mam’ nm”).o: vperspgw. V. m =m”

Proof.—DEsARGUES well-known propositions respecting triangles in perspective being
coaxial, and its converse, can now (cf. #28:1112:31'32'33'41'42) be proved. Then by
drawing a figure for the present proposition the conclusion easily follows from some
pure geometrical reasoning.

*31. The Pownt-Ordering Relation.

It will be proved in this section that the point-ordering relation (R,,) has at any
instant the same properties as the essential relation of Concept I. (¢f. *31:3). It
follows that the ordinary Fuclidean geometry holds of the figures of Concept V., the
points at infinity being the points of the punctual plane ooy, and the metrical ideas
being introduced by appropriate definitions.

*31°11. Proposition.—Assuming (IL-XI., XIIL., XIV.) Hp R, the class R, (;;;¢) is
identical with the class of non-cogredient points. In symbols,

[ (JL-XL, XIIL, XIV.)Hp R . 5. R,/ (;;;¢) = pnty, = oo,

Proof—Cf. ¥3:42 and *20°51 and #2271 and *26-24, '

*31°12. Proposition.—Assuming (IL-XV.)HpR, if a is a punctual line, and A
and B are two non-cogredient points on it, then a, without its cogredient point, is
identical with the whole class formed by R, (;ABt) and R,,'(A;Bt) and Ri(AB;¢)
together with A and B added as members. In symbols,

Foo(IL-XV.)HpR .o : aeling . A, Beamooyg, . A= B.>.

a=oog = R, (;ABt) u R, (A;Bt) u R, (AB;¢) u A u B

Proof.—The identity is to be proved by showing that each class contains the

other. For one half of the proof, ¢f. ¥2272 and *27-21. For the otber half, ¢f.
*20°51 and *27-21°31. '


http://rsta.royalsocietypublishing.org/

JA '\

/ y

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A A

A \
1~

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

MATHEMATICAL CONCEPTS OF THE MATERIAL WORLD. 521

*31-21. Proposition.—Assuming (IL-VL)Hp R, the point-order ABC implies the
point-order CBA. In symbols,

F. (IL-VL)HpR.>: R,/(ABCY) .. R, (CBA?)

Proof.—Cf. *1:63 and *20°51.
#31-22. Proposition.—Assuming (IL-VIL, IX.-XL)HpR, if A, B, C are in the
point-order ABC, then A, B, and C are distinct. In symbols,

F.o (IL-VIL, IX.-XL)HpR .5: R,/(ABCt). 5. A% B. A= C.BxC

Proof—There are (c¢f. *¥20°51) interpoints u, v, w on a common objective real a,
such that R’(uvwt) and [ABC] perspg[ugVptn:], where (¢f. *20:23 and *25'32)
Uge, Vrsy Wy are the dominant points of u, v, w. But (¢f. ¥1'62 and *22'38) ug,, Vg, Wy
are distinct points, Hence (cf. #¥20:32) A, B, C are distinct points.

#31'28. Proposition.—Assuming (IL-XV.) Hp R, the point-order ABC is incon-
sistent with the point-order BCA. In symbols,

F. L-XV.)HpR.5: R,/ (ABCY) . 5. — R:(BCA?)

Proof.—Since this proof is long, the paragraphs will be numbered for reference
by (i), (ii), &ec., prefixed.

(i) If w, v, w are interpoints on the objective real a, and «, ¢/, w' interpoints on the
objective real o/, and @ and o are cogredient, and [upVgws,] perspg; [%'r rit¢'z:), then
(¢f *20°23°41 and *25'32) u, v, w and «/, v/, w’ must agree in interpoint order, and
(cf. *1-64) each set of interpoints has only one (if any) interpoint order (counting wvw
and wvu as the same order), and (¢f. *27°'43) o and o' are distinct.

(ii) From *20°51, R,,}(ABCt) implies («) that A, B, C are on an object real d;
(B) that there are interpoints w, v, w on an objective real a, cogredient with d;
(y) that Ry, (uvwt) ; (8) that [ABC] perspg, [urwpavn]; and (e) (cf: *27°48) that a and
d are distinct.

(iii) Assume that R, (BCA¢#) also holds. Then, in addition to the entities of (ii),
there exist interpoints «/, ¥/, &’ on an objective real ¢/, satisfying all the conditions of
(ii) without changes, except that (ii, y) becomes R, (v’w'w’t). This assumption (iii)
will now be proved to be absurd. ‘

(iv) From XIITHp R (¢f. *¥22°61) and *26°11-22, d, a, ¢’ are copunctual and « and
o are either cogredient or identical.

(v) Hence (cf: *30°3) either (Case 1) [ugmgW:] perspr, [ r's.] 0 (Case 1L),
a and o are identical. _

(vi). Case I—We have [uggag,]| perspp: [%rV'rt's]. Hence (¢f. *20°41) the
interpoint orders of u, v, w and v/, o/, w’ must agree. Hence, from (ii, ), R/ (w'v'w't)
holds.  But (¢f. *1°64) this is inconsistent with R, (v'w'u't). Hence Case L. cannot
hold.

VOL. CCV.—A. 3 x
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(vii). Case Il. —We have « and « identical. Now (c¢f. #81-22) A, B, C are distinet
points. Hence [¢f. (ii, 8) and *30°1] ug, vy, wg, are distinct points, and [¢f. (ii, B)]
they are collinear. Hence, by XV Hp R (¢f. *22°72), they are in some point-order.
Hence [¢f. (ii)] three interpoints %", v”, w” exist on a common objective real «, which
is distinet from a and cogredient with it, and also [y " g0 r;] PErSPr: [ UniVrWrs |

(viil). Hence Case II. divides into two subclasses, either (Case I1., &) x is not
identical with d, or (Case I1., 8) x is identical with d.

(ix). Case II., a.—a and o are identical and distinet from both d and «, and d and
x are distinct; also @, d, z are cogredient and therefore (c¢f. *26:11-22) copunctual.
Hence [cf. (i1, 8) and (vii) and /‘303] we have [ABC] perspg, [4/rt" rat"r;]. Hence
[ef. (iil, 8) and *80°3] [w/n v r:] pETSPR; [# 00 vtt"'re].  Hence [¢f. *20°41 and (ii, y)
and (vii)] R,/ («/vw't). Hence (¢f. *¥1'64) Case II., a, cannot hold.

(x). Case I, B.—a and o are identical, # and d are identical, and @ and d are
cogredient and distinct. Since (¢f. ¥20°51) A, B, C are not cogredient points, they
are distinct from w'p, vy, W'y, since the only point common to the punctual associates
of @ and d is a cogredient point. Thus none of 'y, /g, W'y, can be cogredient points.
Hence (cf. #28:33) there is a punctual line joining B and w'y, which does not possess
A or 'y or V (¢f. figure annexed). Hence (¢f. ¥28'42) there is at least one other

14
/ ’ /
Yre Ve  Wre ey "o Wre a and '
" " " {
Uy Vae Yre / \ d andx
‘A " B C
X
/ Al/ Bll \Cll

point, A” say, lying in the punctual line joining A and w'y in addition to V and w'g,
and A. Hence (cf. #28'33) there is a punctual line, z say, joining A” to the cogredient
point common to the punctual associates of @ and d. This punctual line must meet
(¢f. *28°42) the punctual lines VB and VC (¢f. figure annexed) in the points B” and
C”. Hence

- [A”B"C"] perspr: [ABC],
and hence (¢f. *30°3) we have

[A”B"C"] perspg: [ riVritWre],

and hence (cf. *30°8) we have

[A"B"C"] perspg, [ "zt re)r
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But also
[A”B”C”] perspg; [u,Rtv'Rtw,m],

and hence (¢f. ¥30'3) we have
[u’Rt'U’m'w,Rt] Perspx: [u”m””mw”m]-

Thence, by the same reasoning as that in (ix) for Case IL., «, it follows that Case II., 8,
cannot hold.

(xi). Hence neither Case I. nor Case II can hold; and therefore the proposition
follows.

*31°3. Proposition.—The point-ordering relation (R,,) satisfies all the axioms
satisfied by the essential relation of Concept IIL, except the axiom of persistence for
that concept.

Proof.—In order to prove this, we make a comparison, as in Concept IIL., with the

axioms of Concept 1.

For  IHpR of Concept L., ¢f. *25°12 and #2624 and *31-11.
For I1IHpR of Concept I., cf. *31-21.

For IIIHp R of Concept L, cf. *31:23.

For IV HpR of Concept L, cf. *31-22.

For  VHpR of Concept L, ¢f. XIV Hp R (*22°71).
For VIHpR of Concept L., ¢f. ¥28°33 and *31-12.
For VIIHpR of Concept L, cf. *28:01-11.

For VIITHp R of Concept 1., ¢f. XVIHp R (¥22:73).
For IXHpR of Concept L., ¢f. *¥28°12.

For X HpR of Concept L., ¢f. *28-42.

For XIHpR of Concept L, ¢f *XVILHp R (*22:74).
For XITHp R of Concept L., cf. *¥26:23 and *2833.

Note.—In order to complete this comparison, it must be noticed that it follows from
*31°12 that the punctual line, with its cogredient point excepted, is the line as
defined on the analogy of Concept I. Also, it follows, from *28:32 and *28:42 and
the propositions of *31, that the punctual plane, with its cogredient points excepted,
is the plane as defined on the analogy of Concept I. Then the transition to projective
geometry is made, not by constructing a fresh type of points (the projective points),
but simply by putting back the class (oop) of cogredient points. Metrical geometry
is then constructed in the well-known way,t making the plane (oog) of cogredient
points to be the plane at infinity.

The Extraneous Relation.—For the purpose of enabling velocity and acceleration
to be measured, an extraneous relation is required, in all respects similar to those
required in Concepts III. and IV., and the description already given need not be
repeated.

* Cf. VEBLEN, loc. cit., for a sketch of this method ; also CLEBSCH and LINDEMANN, loc. cit,
3 X 2
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The Corpuscles.—We may distinguish five types of points. A point of Type (1)
contains no interpoints, and consists only of its nonsecant part (¢f. ¥20°231).. A point
of Type (2) contains a single interpoint and no nonsecant part. Such a point is a
single interpoint. A point of Type (3) contains a single interpoint together with a
nonsecant part. A point of Type (4) contains many interpoints with no nonsecant
part. A point of Tpe (5) contains many interpoints together with a nonsecant point.

We seem to be precluded from considering the ¢ particles” to be stable points by
the same difficulty as to the resulting permanence of collinearity, which was explained
in considering the corpuscles of Concept IV. It is evident that at this stage many
subdivisions of Concept V. are possible, in respect to the ideas which may be formed
of the nature of the corpuscle. The following sketch of a possible development is
given because of its superior simplicity, and also because of a certain consonance
which it possesses with some modern physical ideas.

It is evident that volumes, in which, in some sense, there is an excess or a defect of
interpoints, can be conceived as being charged with one or other of the two sorts of
electricity. This idea is taken as the basis of the following brief outline of a possible
development of the concept. Let the interpoints be identified with negative
electricity and the nonsecant parts of points with positive electricity. A point of
type (1) is a negative electron; a point of type (2) is a positive electron. The
persistence of existence of an isolated electron of either type is to be defined by
persistence of type and continuity of motion. If the electron is not isolated, consider,
for example, a volume in which electrons of type (2) either compose all the points, or,
at least, are everywhere dense. Then the persistence of such a collection of electrons
must be considered as a whole, and is defined, as in the simpler case, by persistence
of type and continuity of motion.

Three methods of procedure now suggest themselves, either (Cuse 1.) to assume
that the electrons consist of single points, so that a corpuscle is a volume containing
a large finite number of points of type (2), and a small finite number of points of
type (1), or (Case II.) to assume that a corpuscle is a volume in which points of
type (2) are (at least) everywhere dense, and which contains a finite number of points
of type (1), or (Case II1.) to assume that an electron of either type is essentially a
volume (possibly with internal boundaries) in which points of the appropriate type
are at least everywhere dense. In Case IIL a corpuscle will be a relatively large
electron of type (2) containing within it a finite number of relatively small electrons
of type (1). Case IIL has the merit, such as it is, of making the ““inverse square”
law of electricity appear somewhat natural. The field of force ““at a point” produced
by an electron may be conceived as proportional to the number of objective reals
shared in common by the point and the “ electric points” in the electron, and also to
the number of these electric points. The number of electric points would be measured
by the mass of the electron, the number of objective reals by the solid angle subtended
at the point by the electron.
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What is wanted at this stage is some simple hypothesis concerning the motion of
objective reals and correlating it with the motion of electric points and electrons.
From such a hypothesis the whole electromagnetic and gravitational laws might
follow with the utmost simplicity. The complete concept involves the assumption of
only one class of entities as forming the universe. Properties of * space” and of the
physical phenomena ‘in space” become simply the properties of this single class
of entities. In regard to the simplification of the preceding axioms, viz., of
(IL-XVL)Hp R, the ideal to be aimed at would be to deduce some or all of them
from more general axioms which would also embrace the laws of physics. Thus these
laws should not presuppose geometry, but create it.
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